Dr Camell Kachour, Ph.D Macquarie University, Supervisors : Michael Batanin and Ross Street.
Education :
10/2013 PhD thesis, Macquarie University, Sydney. Title: Aspects of Globular Higher Category Theory
Talks :
02/2007 Université de Paris 7, Paris, SIC. Définition algébrique des cellules non-strictes
06/2008 Université du Littoral Côte d’Opale, Calais, CT2008. Operadic definition of the non-strict cells
01/09/2010 Macquarie University, Sydney. Steps toward the Operadic definition of the Weak ω-Category of Weak ω-Categories (part 1): Operadic approach of the weak higher transformations
08/09/2010 Macquarie University, Sydney. Steps toward the Operadic definition of the Weak ω-Category of Weak ω-Categories (part 2): Weak higher transformations as models for Theories
15/09/2010 Macquarie University, Sydney. Steps toward the Operadic definition of the Weak ω-Category of Weak ω-Categories (part 3): The Red Operad
14/09/2011 Macquarie University, Sydney. An algebraic approach to weak ω-groupoids
20/12/2011 Université de Paris 7, Paris, PPS seminar. Approche algébrique des ω-groupoïdes faibles
19/08/2012 Macquarie University, Sydney. The importance of ω-operad of coendomorphism in Higher Category Theory (part 1)
05/09/2012 Macquarie University, Sydney. The importance of ω-operad of coendomorphism in Higher Category Theory (part 2)
27/11/2014 USTHB, Algiers. Hommage Catégorique à Alexander Grothendieck
16/01/2015 Warsaw University, Warsaw. Algebraic Models of (∞,n)-Categories on the Globular Setting
05/06/2015 Université de Paris 7, Paris. Opérades supérieures de Batanin et Structures infini-graphiques
11/09/2015 Université de Paris 7, Paris. Vers l’infini-catégorie faible des infini-catégories faibles dans le contexte globulaire
International congress :
06/2008 CT2008, Calais, France.
10/2008 International Conference, Brussels, Belgium, Royal Flemish Academy.
06/2010 CT2010, Genova, Italia. 06/2014 CT2014, Cambridge, UK.
Published and Accepted Articles :
[1] Kamel Kachour, Définition algébrique des cellules non-strictes, Cahiers de Topologie et de Géométrie Différentielle Catégorique (2008), volume 1, pages 1–68.
[2] Camell Kachour, Operadic Definition of the Non-strict Cells, Cahiers de Topologie et de Géométrie Différentielle Catégorique (2011), volume 4, pages 1–48.
[3] Camell Kachour, Algebraic Definition of weak (∞,n)-Categories, Published in Theory and Applications of Categories (2015), Volume 30, No. 22, pages 775-807
[4] CamellKachour, ω-OperadsofCoendomorphismsandFractal ω-OperadsforHigherStructures., Published in Categories and General Algebraic Structures with Applications (2015).
[5] Camell Kachour, Operads of higher transformations for globular sets and for higher magmas, Published in Categories and General Algebraic Structures with Applications (2015).
[6] Camell Kachour, Steps toward the Weak ω-category of the Weak ω-categories in the globular setting, Published Categories and General Algebraic Structures with Applications (2015).
Works in Progress :
[7] Camell Kachour and Jacques Penon, Higher Operads for the Weak Higher Transformations and Stable Pseudo-Algebras, Work in progress (2015).
[8] Camell Kachour, Model of Higher Stacks on the Globular Setting, Work in Progress (2015).
Experience Teaching :
1996–2008 Examiner, Ministère de l’éducation nationale, Paris. Examiner for undergraduate level students (level for class elites “Special Mathematics” and “Superior Mathematics” in France)
Languages :
French Mother tongue; English Fluently Interests : Music Mountain Hikking Japanese Judo
Camell Kachour, 67 rue Brancion, 75015 Paris, France. camell.kachour@gmail.com
Last revised on August 31, 2016 at 02:35:30. See the history of this page for a list of all contributions to it.