Demazure, lectures on p-divisible groups, V.2, points of finite order and endomorphisms

Let $k$ be a field of prime characteristic $p$.

Let $A$ be an abelian variety of dimension $g$. Let $l$ be a prime number.

For $n\in \mathbb{N}$ the kernel $ker l^n id_A)$ is a finite $k$-group of rank $l^{2 n g}$. We define

$A(l):=\cup_n ker(l^n id_A)$

We have $A(l)\otimes_k \overline k\simeq (\mathbb{Q}(\mathbb{Z}_l))^{2g}$. If $l\neq p$, then $A(l)$ is an étale formal k-group?.

We define

$H^1(A,l):=hom_{\mathbb{Z}_l}(A(l)\otimes_k \overline k, \mathbb{Q}_l /\mathbb{Z}_l)$

This is a free module of rank $2g$ over $\mathbb{Z}_l$ and also a Galois module.

If $l=p$, then $A(p)$ is a $p$-divisible group of height $2g$. In this case we define

$H^1(A,p):=M(A(p))$

as the Dieudonné module of $A(p)$. It is an F-lattice? (defined in Demazure, lectures on p-divisible groups, IV.1, isogenies) over $k$, and in particular a free module of rank $2g$ over $W(k)$.

For any prime $l$, the assignation

$A\mapsto H^1(A,l)$

is a functor.

Created on May 28, 2012 at 00:08:34. See the history of this page for a list of all contributions to it.