nLab Felipe Ponce

X-Ray Transform

X-Ray Transform

The X-ray transform is the operator

Xf(l):= lfdλ(l), Xf(l) := \int_l f\,d\lambda(l),

where l nl\subset\mathbb{R}^n is a line, and λ\lambda the Lebesgue measure on the line. The manifold M nM_n can be represented as

M n={(σ,x)S n1× nx,ω=0}, M_n = \{(\sigma, x)\in S^{n-1}\times\mathbb{R}^n \mid \langle x,\omega\rangle = 0\},

where (σ,x)(\sigma,x) represents a line that passes through xx with direction ω\omega. We endow M nM_n with a measure μ\mu invariant under rigid motions. It is an open problem to determine the exponents 1p,q,r1\le p,q,r\le\infty for which the following inequality holds:

Xf L q(ωL x r( n1))Cf L p( n). \left\Vert Xf\right\Vert_{L^q(\omega\mapsto L^r_x(\mathbb{R}^{n-1}))} \le C\left\Vert f\right\Vert_{L^p(\mathbb{R}^n)}.

For brevity we will write L ω qL x r:=L q(ωL x r( n1))L^q_\omega L^r_x := L^q(\omega\mapsto L^r_x(\mathbb{R}^{n-1})).

Drury proved the following Theorem.

Theorem

If E nE\subset \mathbb{R}^n is a measurable set, and 1 E1_E is the characteristic function of EE, then

Xf L n+1,(M n)C|E| 2n+1,\left\Vert Xf\right\Vert_{L^{n+1,\infty}(M_n)} \le C\left\vert E\right\vert^\frac{2}{n+1},

where L p,L^{p,\infty} is the weak-L nL^n space.

This inequality corresponds to the restricted weak version of the point (p,q,r)=(n+12,n+1,n+1)(p,q,r) = (\frac{n+1}{2}, n+1, n+1).

Proof

The dual operator X *X^* is defined by duality as gXfdμ(l)=fX *gdx\int gXf\,d\mu(l) = \int fX^*g\,dx, where ff and gg are smooth functions. Therefore,

X *g=gδ x(l)dμ, X^*g = \int g\delta_x(l)\,d\mu,

where δ l(x)=lim ε0ε n+11 {llB(x,ε)}\delta_l(x) = \lim_{\varepsilon\to 0}\varepsilon^{-n+1}1_{\{l\mid l\cap B(x,\varepsilon)\neq\emptyset\}}.

Set f=1 Ef = 1_E and define the set F:={lM nXf(l)λ}F := \{l\in M_n\mid Xf(l)\ge\lambda\}, then

λ|F| FXfdμ=fX *1 FdxX *1 F f 1. \lambda\vert F\vert \le \int_F Xf\,d\mu = \int fX^*1_F \,dx \le \left\Vert X^*1_F\right\Vert_\infty\left\Vert f\right\Vert_1.

Now choose a point x 0x_0 such that X *1 F(x 0)12X *1 F X^*1_F(x_0)\ge \frac{1}{2}\left\Vert X^*1_F\right\Vert_\inftyxx is the Bourgain’s bush. By translation symmetry we can assume that x 0=0x_0 = 0. If δ 0\delta_0 denotes the Dirac delta at the origin, then

1 FXfXδ 0dμ(l)λ FXδ 0dμ(l)λ2X *1 F . \int 1_F Xf\,X\delta_0\,d\mu(l) \ge \lambda\int_F X\delta_0\,d\mu(l)\ge \frac{\lambda}{2}\left\Vert X^*1_F\right\Vert_\infty.

On the other hand

1 FXfXδ 0dμ(l)fX *(1 FXδ 0)dxf L n,1X *(1 FXδ 0) L nn1,, \int 1_F Xf\,X\delta_0\,d\mu(l) \le \int fX^*(1_F X\delta_0)\,dx \le \left\Vert f\right\Vert_{L^{n,1}} \left\Vert X^*(1_F X\delta_0)\right\Vert_{L^{\frac{n}{n-1},\infty}},

where L p,q( n)L^{p,q}(\mathbb{R}^n) refers to the Lorentz spaces. The function X *(1 FXδ 0)X^*(1_F X\delta_0) can be explicitly computed

X *(1 FXδ 0)(x)=1|x| n11 F(l(0,x)), X^*(1_F X\delta_0)(x) = \frac{1}{\vert x\vert^{n-1}}1_F(l(0,x)),

where l(0,x)l(0,x) is the line that passes through 00 and xx. Then, we can estimate the norm as

X *(1 FXδ 0) L nn1,=c n|X *1 F(0)| n1nc nX *1 F n1n. \left\Vert X^*(1_F X\delta_0)\right\Vert_{L^{\frac{n}{n-1},\infty}} = c_n\vert X^*1_F(0)\vert^\frac{n-1}{n}\le c_n\left\Vert X^*1_F\right\Vert_\infty^\frac{n-1}{n}.

Hence, we get the upper bound

1 FXfXδ 0dμ(l)c nf L n,1X *1 F n1n. \int 1_F Xf\,X\delta_0\,d\mu(l) \le c_n \left\Vert f\right\Vert_{L^{n,1}}\left\Vert X^*1_F\right\Vert_\infty^\frac{n-1}{n}.

Hence, we have that

f L n,1c nλX *1 F 1n. \left\Vert f\right\Vert_{L^{n,1}}\ge c_n\lambda \left\Vert X^*1_F\right\Vert_\infty^\frac{1}{n}.

Therefore, we conclude that

c n|F|λ n+1f 1f L n,1 n, c_n\vert F\vert\lambda^{n+1} \le \left\Vert f\right\Vert_1\left\Vert f\right\Vert_{L^{n,1}}^n,

which implies the restricted weak inequality.

Created on April 9, 2020 at 19:44:02. See the history of this page for a list of all contributions to it.