The (∞,2)-category of monoidal (∞,1)-categories.
A monoidal (∞,1)-category is equivalently a coCartesian fibration of (∞,1)-operads over Assoc.
A symmetric monoidal (∞,1)-category is equivalently a coCartesian fibration of (∞,1)-operads over Comm.
Accordingly, for any (∞,1)-operad, a coCartesian fibration of -operads over may be called an -monoidal -category.
see table - models for (infinity,1)-operads
Last revised on March 1, 2012 at 00:29:33. See the history of this page for a list of all contributions to it.