Mostowski's collapsing lemma

**Mostowski’s collapsing lemma** states that any extensional well-founded relation is isomorphic to a (necessarily unique) transitive set.

Mostowski’s lemma can be proven in ZF set theory using the axiom of replacement and axiom of separation. In set theories that are not powerful enough to prove the lemma, it can be adopted as a separate axiom; in this case it is sometimes called **Mostowski’s principle**.

category: foundational axiom

Last revised on September 3, 2012 at 14:09:52. See the history of this page for a list of all contributions to it.