An intrinsic notion of an open subobject in an elementary topos.
A monomorphism in an elementary topos is a Penon open if the following statement holds in the internal logic of :
If is a Penon open, then
Jacques Penon, De l’infinitésimal au local (Thèse de Doctorat d’État), Diagrammes S13 (1985), 1-191. numdam.
Eduardo J. Dubuc, Jacques Penon, Objets compacts dans les topos, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 40:2 (1986), 203-217. doi.
Jacques Penon, Infinitésimaux et intuitionnisme, Cahiers de topologie et géométrie différentielle 22:1 (1981), 67-72. numdam.
Oscar P. Bruno, Logical opens of exponential objects, Cahiers de Topologie et Géométrie Différentielle Catégoriques 26:3 (1985), 311-323. numdam.
Marta C. Bunge, Felipe Gago, Ana María San Luis, Synthetic Differential Topology, Cambridge University Press, 2018. ISBN: 9781108553490, DOI.
Created on February 15, 2025 at 01:25:09. See the history of this page for a list of all contributions to it.