Siegel modular forms are one generalization of modular forms to functions in more than one complex variable (another such generalization are Hilbert modular forms).
Where ordinary modular forms are locally functions on the moduli stack of elliptic curves over the complex numbers, so Siegel modular forms are locally functions on something like the moduli stack of higher-dimensional complex abelian varieties.
Let be the Siegel upper half-space of degree and let the subgroup of elements in the symplectic group with integral entries. Let be a finite-dimensional vector space over and fix a representation
A Siegel modular form of weight is a holomorphic function such that
for all and all . If , we additionally require that is holomorphic at . A classical Siegel modular form of weight is the special case when the representation is given by taking -th powers of the determinant. Further specializing to , this gives classical (also known as elliptic) modular forms.
Gerard van der Greer, Siegel Modular Forms, arxiv:0605346
Last revised on November 23, 2022 at 04:47:21. See the history of this page for a list of all contributions to it.