nLab Stirling's approximation

Redirected from "quaternionic vector spaces".

Contents

Idea

Stirling’s approximation, or Stirling’s formula, gives an asymptotic approximation to the factorial function in terms of elementary functions.

Statement

Define n!n! for nn \in \mathbb{N} as usual by recursion: 0!=10! = 1 and (n+1)!=(n+1)n!(n+1)! = (n+1) \cdot n!. Stirling’s approximation says

n!n n2πne nn! \sim \frac{n^n \sqrt{2\pi n}}{e^n}

or in other words that

limnn n2πne nn!=1.\underset{n \to \infty}{\lim}\; \frac{n^n \sqrt{2\pi n}}{e^n \cdot n!} = 1.

Proof

Many proofs are known. The following is meant to bring out the essential kinship between this formula and the famous Gaussian integral identity

e x 2dx=π,\int_{-\infty}^\infty e^{-x^2}\; d x = \sqrt{\pi},

or equivalently

e x 2/2dx=2π.\int_{-\infty}^\infty e^{-x^2/2}\; d x = \sqrt{2\pi}.

First we establish an elementary fact, accessible to a student of elementary calculus.

Proposition

For some constant CC,

n!Cn nne n.n! \sim C\frac{n^n \sqrt{n}}{e^n}.

Proof

Consider a trapezoidal sum estimate? for the integral

I n= 1 nlogxdx=xlogxx| 1 n=nlognn+1=1+logn ne n.I_n = \int_1^n \log x\; dx = \left. x\log x - x\right|_1^n = n \log n - n + 1 = 1 + \log \frac{n^n}{e^n}.

Partitioning the interval [1,n][1, n] into subintervals of unit length, the corresponding trapezoidal sum is

T n=log1+log22+log2+log32++log(n1)+logn2=log(n!)12logn=logn!n.T_n = \frac{\log 1 + \log 2}{2} + \frac{\log 2 + \log 3}{2} + \cdots + \frac{\log (n-1) + \log n}{2} = \log (n!) - \frac1{2} \log n = \log \frac{n!}{\sqrt{n}}.

T nT_n underestimates I nI_n because the graph of log\log is “concave down” (meaning logx-\log x is a convex function). In other words, the error terms

k k+1logxdxlogk+log(k+1)2(1)\int_k^{k+1} \log x\; dx - \frac{\log k + \log (k+1)}{2} \qquad (1)

are positive, so that the sum of these error terms from k=1k=1 to n1n-1, which is I nT nI_n - T_n, increases with nn. However, using the error term estimate for the trapezoidal rule, the term (1) is on the order of 1/k 21/k^2 (the maximum value of |(log)(x)|=1/x 2|(\log)''(x)| = 1/x^2 over [k,k+1][k, k+1]). Since 1/k 2\sum 1/k^2 converges, we see that the increasing sequence I nT nI_n - T_n has a uniform upper bound and therefore a limit. Hence the limit

limn(I n1)T n=limnlogn ne nlogn!n=limnlogn nne nn!\underset{n \to \infty}{\lim} (I_n - 1) - T_n = \underset{n \to \infty}{\lim} \log \frac{n^n}{e^n} - \log \frac{n!}{\sqrt{n}} = \underset{n \to \infty}{\lim} \log \frac{n^n \sqrt{n}}{e^n \cdot n!}

exists, and therefore n!Cn nne nn! \sim C\frac{n^n \sqrt{n}}{e^n} for some constant CC.

The following lemma makes reference to the Gamma function.

Lemma

2πC=limnΓ(n+12)Γ(n)n\frac{\sqrt{2\pi}}{C} = \underset{n \to \infty}{\lim} \frac{\Gamma(n + \frac1{2})}{\Gamma(n) \cdot \sqrt{n}}; in particular, this limit exists.

Proof

From n!Cn nne nn! \sim C\frac{n^n \sqrt{n}}{e^n}, we easily derive

(2n)!n!n!2 2n2nCn\frac{(2n)!}{n! \cdot n!} \sim \frac{2^{2n} \sqrt{2n}}{C n}

so that

1C(2n)!2 2nn!n!n2n=(2n1)(2n3)312(2n2)(2n4)212n.\frac1{C} \sim \frac{(2n)!}{2^{2n} n! \cdot n!} \cdot \frac{n}{\sqrt{2n}} = \frac{(2n-1)(2n-3) \ldots 3 \cdot 1}{2 \cdot (2n-2)(2n-4) \ldots 2} \cdot \frac1{\sqrt{2n}}.

Then, using Γ(12)=2 0 e x 2dx=π\Gamma\left(\frac1{2}\right) = 2\int_0^\infty e^{-x^2} dx = \sqrt{\pi}, we have

2πC(2n1)(2n3)312(2n2)(2n4)2πn=(n12)(n32)(12)Γ(12)(n1)!n=Γ(n+12)Γ(n)n.\frac{\sqrt{2\pi}}{C} \sim \frac{(2n-1)(2n-3) \ldots 3 \cdot 1}{2 \cdot (2n-2)(2n-4) \ldots 2} \cdot \frac{\sqrt{\pi}}{\sqrt{n}} = \frac{\left(n-\frac1{2}\right)\left(n-\frac{3}{2}\right) \ldots \left(\frac1{2}\right) \Gamma\left(\frac1{2}\right)}{(n-1)! \cdot \sqrt{n}} = \frac{\Gamma\left(n + \frac1{2}\right)}{\Gamma(n) \cdot \sqrt{n}}.

Proposition

limnΓ(n+12)Γ(n)n=1\underset{n \to \infty}{\lim} \frac{\Gamma(n + \frac1{2})}{\Gamma(n) \cdot \sqrt{n}} = 1.

Proof

From log-convexity of Γ\Gamma (see here), we may derive

Γ(x12)Γ(x1)Γ(x)Γ(x12)Γ(x+12)Γ(x)\frac{\Gamma(x-\frac1{2})}{\Gamma(x - 1)} \leq \frac{\Gamma(x)}{\Gamma(x-\frac1{2})} \leq \frac{\Gamma(x+\frac1{2})}{\Gamma(x)}

which implies that the values of Γ(x+12)Γ(x)x\frac{\Gamma(x+\frac1{2})}{\Gamma(x) \cdot \sqrt{x}}, with xx ranging over half-integers, tend to the same limit LL as with xx ranging over whole integers. Therefore

L 2=limnΓ(n+1)n+12Γ(n+12)Γ(n+12)nΓ(n)=limnnΓ(n)(n+12)nΓ(n)=limnn(n+12)n,L^2 = \underset{n \to \infty}{\lim} \frac{\Gamma(n+1)}{\sqrt{n+\frac1{2}}\cdot \Gamma(n + \frac1{2})} \cdot \frac{\Gamma(n + \frac1{2})}{\sqrt{n}\Gamma(n)} = \underset{n \to \infty}{\lim} \frac{n\Gamma(n)}{\sqrt{(n+\frac1{2})n}\cdot \Gamma(n)} = \underset{n \to \infty}{\lim} \frac{n}{\sqrt{(n+\frac1{2})n}},

whence L 2=1L^2 = 1, and therefore L=1L = 1.

References

  • n-Category Café post

  • Dan Romik, Stirling’s Approximation for n!: the Ultimate Short Proof?, The American Mathematical Monthly Volume 107 Issue 6 (2000), 556-557. doi.org/10.1080/00029890.2000.12005235

Last revised on April 12, 2024 at 22:24:35. See the history of this page for a list of all contributions to it.