Argument shift method is a method to construct commutative subalgebras of the symmetric algebra on a Lie algebra with respect to the Poisson-Lie bracket. It is of importance in the study of integrable systems.
A. S. Mishchenko, A. T. Fomenko, Euler equations on finite-dimensional Lie groups, Izv. Akad. Nauk SSSR Ser. Mat. [Math. USSR-Izv.], 42 (1978), no. 2, 386–415; Integrability of Euler equations on semisimple Lie algebras, in: Proc. Seminars on Vector and Tensor Analysis [in Russian], no. 19, Moskov. Gos. Univ., Moscow, 1979, 3–94
S. V. Manakov, Remark on integrability of Euler equations of the dynamics of an n-dimensional rigid body, Funktsional. Anal. i Prilozhen. [Functional Anal. Appl.], 10 (1976), no. 4, 93–94
L. G. Rybnikov, The argument shift method and the Gaudin model, Funct. Anal. Appl. 40, 188–199 (2006)
V. V. Shuvalov, On limits of Mishchenko–Fomenko subalgebras in Poisson algebras of semisimple Lie algebras, Funct. Anal. Appl. 36, 298–305 (2002) doi
Y. Ikeda, Quasidifferential operator and quantum argument shift method, Theor Math Phys 212, 918–924 (2022) doi
Created on September 25, 2022 at 15:37:38.
See the history of this page for a list of all contributions to it.