nLab argument shift method

Argument shift method is a method to construct commutative subalgebras of the symmetric algebra on a Lie algebra with respect to the Poisson-Lie bracket. It is of importance in the study of integrable systems.

  • A. S. Mishchenko, A. T. Fomenko, Euler equations on finite-dimensional Lie groups, Izv. Akad. Nauk SSSR Ser. Mat. [Math. USSR-Izv.], 42 (1978), no. 2, 386–415; Integrability of Euler equations on semisimple Lie algebras, in: Proc. Seminars on Vector and Tensor Analysis [in Russian], no. 19, Moskov. Gos. Univ., Moscow, 1979, 3–94
  • S. V. Manakov, Remark on integrability of Euler equations of the dynamics of an n-dimensional rigid body, Funktsional. Anal. i Prilozhen. [Functional Anal. Appl.], 10 (1976), no. 4, 93–94
  • L. G. Rybnikov, The argument shift method and the Gaudin model, Funct. Anal. Appl. 40, 188–199 (2006)
  • V. V. Shuvalov, On limits of Mishchenko–Fomenko subalgebras in Poisson algebras of semisimple Lie algebras, Funct. Anal. Appl. 36, 298–305 (2002) doi
  • Y. Ikeda, Quasidifferential operator and quantum argument shift method, Theor Math Phys 212, 918–924 (2022) doi

Created on September 25, 2022 at 15:37:38. See the history of this page for a list of all contributions to it.