books in algebraic geometry

Books in algebraic geometry

We should limit to books which we can really recommend, either by their special content, approach or pedagogical value. Historically fine but outdated books are in a separate historical section below. The outstanding surveys may be added to the lists if they are not too specialized to minor directions: the subfields may be covered in separate lists. See also MathOverflow discussions best-algebraic-geometry-text-book-other-than-hartshorne, life-after-hartshorne-the-book. To orient in the basic standard terminology, the wikipedia’s Glossary of algebraic geometry is decent.

Introductory level but excellent textbooks

  • Miles Reid, Undergraduate algebraic geometry, London Math. Soc. Student Texts 12
  • Joe Harris, Introductory algebraic geometry (varieties)
  • Igor Shafarevich, Basic algebraic geometry (varieties and schemes)
  • Shigeru Mukai, An introduction to invariants and moduli, Cambridge Studies in Adv. Math. 81
  • William Fulton, Algebraic curves. An introduction to algebraic geometry, 3rd ed. 2008 (varieties)
  • J. S. Milne, Algebraic geometry, 2017 pdf

Schemes, standard sources

  • Robin Hartshorne, Algebraic geometry, Springer
  • Qing Liu, Algebraic geometry and arithmetic curves, 592 pp. Oxford Univ. Press 2002
  • D. Eisenbud, J. Harris, The geometry of schemes, Springer Grad. Texts in Math.
  • David Mumford, Red book of varieties and schemes (cf. also unfinished sequel notes for the later part of Mumford’s course, coauthored with Oda, ch. 1-6 pdf, ch. 7-8 pdf)
  • Amnon Neeman, Algebraic and analytic geometry, London Math. Soc. Lec. Note Series 345
  • M. Demazure, P. Gabriel, Groupes algebriques, tome 1 (later volumes never appeared), Mason and Cie, Paris 1970
  • Ravi Vakil’s Stanford course notes
  • William Fulton, Intersection theory, Springer 1984
  • Ulrich Görtz, Torsten Wedhorn, Algebraic geometry I. Schemes with examples and exercises, Advanced Lectures in Mathematics. Vieweg + Teubner, Wiesbaden, 2010. viii+615 pp. Springerlink book

Grothendieck school sources

  • EGA
  • SGA
  • FGA, FGA explained
  • R. Hartshorne, Residues and duality
  • A. Grothendieck et al. Dix exposes sur la cohomologie des schemas, North Holland, Amsterdam, 1968.

Background in commutative algebra

  • M. Atiyah, I. G. Macdonald, Introduction to commutative algebra, 1969, 1994
  • H. Matsumura, Commutative algebra, 2 vols.; see also the online summary notes by D. Murfet, Matsumura.pdf, Matsumura-Part2.pdf
  • D. Eisenbud, Commutative algebra: with a view toward algebraic geometry, Grad. Texts in Math. 150, Springer-Verlag 1995.
  • James Milne, A primer of commutative algebra, (online notes in progress) webpage, pdf

Algebraic groups/group schemes; Fourier-Mukai transform

  • William C. Waterhouse, Introduction to affine group schemes, GTM 66, Springer 1979
  • Armand Borel, Linear algebraic groups, Springer GTM, 2 editions
  • Tonny A. Springer, Linear algebraic groups, Progress in Mathematics, 9 (2nd ed.), BBirkhäuser Boston 1998, MR1642713
  • David Mumford, Abelian varieties, Oxford Univ. Press 1970
  • A. Polishchuk, Abelian varieties, theta functions and the Fourier transform, Cambridge Univ. Press 2003
  • M. Demazure, P. Gabriel, Groupes algebriques, tome 1 (later volumes never appeared), Mason and Cie, Paris 1970 – has functor of points point of view (listed also under scheme theory); for review see Bull. London Math. Soc. (1980) 12 (6): 476-478, doi
  • J. S. Milne, Abelian varieties, course notes, pdf
  • Daniel Huybrechts, Fourier-Mukai transforms in algebraic geometry, Oxford Mathematical Monographs. 2006. 307 pages.
  • André Weil, Courbes algébriques et variétés abéliennes, Paris: Hermann 1971
  • C. Bartocci, Ugo Bruzzo, D. Hernandez Ruiperez, Fourier-Mukai and Nahm transforms in geometry and mathematical physics, Progress in Mathematics 276, Birkhauser 2009.

Complex-analytic approach

  • P. Griffiths, J. Harris, Principles of algebraic geometry
  • Phillip A. Griffiths, Introduction to algebraic curves
  • Daniel Huybrechts, Complex geometry - an introduction, Springer (2004). Universitext. 309 pages.
  • Donu Arapura, Algebraic geometry over the complex numbers, Springer Universitext 223, 329 pp.

Mori program and birational geometry

  • János Kollár, Shigefumi Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens and A. Corti. Translated from the 1998 Japanese original. Cambridge Tracts in Math. 134 (1998), viii+254 pp.
  • Kenji Matsuki, Introduction to the Mori program, Universitext. Springer 2002. xxiv+478 pp. MR2002m:14011
  • Herbert Clemens, János Kollár, Shigefumi Mori, Higher-dimensional complex geometry, Astérisque 166 (1988), 144 pp. (1989).

Arithmetic aspects

  • Goro Shimura, Abelian varieties with complex multiplication and modular functions, Princeton Univ. Press 1997
  • Dale Husemöller, Elliptic curves, Graduate Texts in Mathematics. 111 (2nd ed.). Springer 2004, ISBN 0-387-95490-2.
  • Anthony Knapp, Elliptic curves, Math Notes. 40. Princeton University Press 1992
  • Neal Koblitz, Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics. 97 (2nd ed.). Springer-Verlag 1993
  • Joseph H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Math. 106, Springer 1986; Advanced Topics in the Arithmetic of Elliptic Curves Graduate Texts in Mathl. 151, Springer 1994.
  • J. H. Silverman, John Tate, Rational Points on Elliptic Curves, Springer 1992.
  • Gerd Faltings, Lectures on arithmetic Riemann-Roch theorem, Annals of Math. Studies 127, Princeton Univ. Press 1992
  • S. Bosch, W. Lütkebohmert, M. Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer 1990. x+325 pp. MR91i:14034

Cohomology theories for schemes

  • J. S. Milne, Etale cohomology, Princeton Univ. Press 1980, gbooks
  • P. Berthelot, A. Ogus, Notes on crystalline cohomology, Princeton Univ. Press 1978. vi+243, ISBN0-691-08218-9
  • …list basic literature on motives
  • Marc Levine, Mixed motives, Math. Surveys and Monographs 57, Amer. Math. Soc. 1998, free pdf
  • F. Hirzebruch, Topological methods in algebraic geometry

Modern extensions of scheme theory

These are advanced books or long foundational expositions.

  • D. Knutson, Algebraic spaces, Springer 1971
  • Ofer Gabber, Lorenzo Ramero, Almost ring theory, arxiv and published
  • Jacob Lurie, Derived algebraic geometry, several issues, arxiv
  • Bertrand Toen, Gabrielle Vezzosi?, HAG and DAG
  • Nikolai Durov, A new approach to Arakelov geometry, arxiv
  • something basic on log schemes, e.g. from Kato/Ogus/Olsson

Algorithmic and computational methods

Things like Groebner bases, combinatorical methods with toric varieties etc.

  • David A. Cox, John B. Little, Don O’Shea, Ideals, varieties, and algorithms

Historically important but now outdated

While many of these fine books are still pleasure for some readers, they do not capture the modern viewpoint and have maybe too old notation to be regularly used. But one should be aware of them, and of sometimes unique material exposed there.

  • W. V. D. Hodge, Daniel Pedoe, Methods of algebraic geometry, 3 vols. (see review by Coxeter in Bull. Amer. Math. Soc. 55, 3, part 1 (1949), 315-316, euclid)
  • F. Severi, Vol. I (1942): Serie, sistemi d’equivalenza e correspondenze algebriche sulle varieta algebriche. Vol. I I (1958) and I I I (1959): Geometria dei sistemi algebrici sopra una superficie e sopra una varieta algebrica.

category: reference

Revised on September 1, 2017 12:53:03 by Zoran Škoda (