nLab cartesian product of A-sets

Contents

 Definition

Given two 𝒜 \mathcal{A} -sets AA and BB, the cartesian product A×BA \times B of AA and BB is given by an 𝒜\mathcal{A}-set structure on the underlying product type A×BA \times B defined by

(a,b) A×B(c,d)(a Ac)(b Bd)(a, b) \sim_{A \times B} (c, d) \coloneqq (a \sim_A c) \wedge (b \sim_B d)
(a,b) A×B(c,d)(a Ac)(b Bd)(a, b) \nsim_{A \times B} (c, d) \coloneqq (a \nsim_A c) \vee (b \nsim_B d)

Given a family of 𝒜 \mathcal{A} -sets (B(x)) x:A(B(x))_{x:A} indexed by a type AA, the indexed cartesian product x:AB(x)\prod_{x:A} B(x) of (B(x)) x:A(B(x))_{x:A} is given by an 𝒜\mathcal{A}-set structure on the underlying dependent product type x:AB(x)\prod_{x:A} B(x) defined by

c x:AB(x)dx:A.c(x) B(x)d(x)c \sim_{\prod_{x:A} B(x)} d \coloneqq \forall x:A.c(x) \sim_{B(x)} d(x)
c x:AB(x)dx:A.c(x) B(x)d(x)c \nsim_{\prod_{x:A} B(x)} d \coloneqq \exists x:A.c(x) \nsim_{B(x)} d(x)

 References

Created on January 13, 2025 at 18:15:27. See the history of this page for a list of all contributions to it.