linear representation theory of binary icosahedral group
conjugacy classes: | 1 | 2 | 3 | 4 | 5A | 5B | 6 | 10A | 10B |
---|---|---|---|---|---|---|---|---|---|
their cardinality: | 1 | 1 | 20 | 30 | 12 | 12 | 20 | 12 | 12 |
let (the golden ratio)
character table over the complex numbers
irrep | 1 | 2 | 3 | 4 | 5A | 5B | 6 | 10A | 10B |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
2 | -2 | -1 | 0 | 1 | |||||
2 | -2 | -1 | 0 | 1 | |||||
3 | 3 | 0 | -1 | 0 | |||||
3 | 3 | 0 | -1 | 0 | |||||
4 | 4 | 1 | 0 | -1 | -1 | 1 | -1 | -1 | |
4 | -4 | 1 | 0 | -1 | -1 | -1 | 1 | 1 | |
5 | 5 | -1 | 1 | 0 | 0 | -1 | 0 | 0 | |
6 | -6 | 0 | 0 | 1 | 1 | 0 | -1 | -1 |
References
Bockland, Character tables and McKay quivers (pdf)
Last revised on September 2, 2021 at 08:42:48. See the history of this page for a list of all contributions to it.