linear representation theory of binary octahedral group
conjugacy classes: | 1 | -1 | a | c | e | f | g | |
---|---|---|---|---|---|---|---|---|
their cardinality: | 1 | 1 | 6 | 8 | 8 | 6 | 6 | 12 |
character table over the complex numbers
irrep | 1 | -1 | a | c | e | f | g | |
---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | |
2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | |
3 | 3 | -1 | 0 | 0 | 1 | 1 | -1 | |
3 | 3 | -1 | 0 | 0 | -1 | -1 | 1 | |
2 | -2 | 0 | 1 | -1 | 0 | |||
2 | -2 | 0 | 1 | -1 | 0 | |||
4 | -4 | 0 | -1 | 1 | 0 | 0 | 0 |
character table over the real numbers
irrep | 1 | -1 | a | c | e | f | g | |
---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | |
2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | |
3 | 3 | -1 | 0 | 0 | 1 | 1 | -1 | |
3 | 3 | -1 | 0 | 0 | -1 | -1 | 1 | |
4 | -4 | 0 | 2 | -2 | 0 | |||
4 | -4 | 0 | 2 | -2 | 0 | |||
8 | -8 | 0 | -2 | 2 | 0 | 0 | 0 |
References
Groupprops, Linear representation theory of binary octahedral group
Bockland, Character tables and McKay quivers (pdf)
Last revised on September 2, 2021 at 08:43:40. See the history of this page for a list of all contributions to it.