linear representation theory of binary tetrahedral group
conjugacy classes: | 1 | -1 | a | b | c | d | |
---|---|---|---|---|---|---|---|
their cardinality: | 1 | 1 | 6 | 4 | 4 | 4 | 4 |
let be a third root of unity,
e.g. , notice that
character table over the complex numbers
irrep | 1 | -1 | a | b | c | d | |
---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 1 | |
1 | 1 | 1 | |||||
1 | 1 | 1 | |||||
3 | 3 | -1 | 0 | 0 | 0 | 0 | |
2 | -2 | 0 | |||||
2 | -2 | 0 | |||||
2 | -2 | 0 | 1 | 1 | -1 | -1 |
character table over the real numbers
irrep | 1 | -1 | a | b | c | d | |
---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 1 | |
2 | 2 | 2 | -1 | -1 | -1 | -1 | |
3 | 3 | -1 | 0 | 0 | 0 | 0 | |
4 | -4 | 0 | -1 | -1 | 1 | 1 | |
4 | -4 | 0 | 2 | 2 | -2 | -2 |
References
Bockland, Character tables and McKay quivers (pdf)
Last revised on September 2, 2021 at 08:43:09. See the history of this page for a list of all contributions to it.