cohomology of dynamical systems

This is a about an example of a nonabelian cohomology for dynamical systems and used in ergodic theory. It is usually in the general setting of dynamical systems in generality of/decoded in terms of action groupoids which directly lead to the cohomology.

  • Д. В. Аносов, Об аддитивном функциональном гомологическом уравнении, связанном с эргодическим поворотом окружности, Изв. АН СССР. Сер. матем., 37:6 (1973), 1259–1274 pdf; Eng. transl.: D. V. Anosov, On an additive functional homology equation connected with an ergodic rotation of the circle, Math. USSR-Izv., 7:6 (1973), 1257–1271 doi

  • А. Н. Лившиц, Когомологии динамических систем, Изв. АН СССР. Сер. матем., 1972, том 36, выпуск 6, 1296–1320 pdf; engl. transl. A. N. Livshits, Cohomology of dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat. 36:6 (1972) 1296–1320

  • Terence Tao, Cohomology for dynamical systems, What’s new blog

  • Yu. I. Lyubich, Axiomatic theory of divergent series and cohomological equations, Fundamenta Math. 198 (2008) doi arxiv/0705.1578

  • appendix to: Host, Kra, Nonconventional ergodic averages and nilmanifolds, Annals Math. 2005 pdf

  • A. A. Kirillov, Динамические системы, факторы и представления групп, УМН (1967) том 22, в. 5(137) стр. 67–80 pdf (Russian); Engl. transl. Dynamical systems, factors and representations of groups, Russian Mathematical Surveys, 1967, 22:5, 63–75

Last revised on October 23, 2016 at 15:00:53. See the history of this page for a list of all contributions to it.