nLab crystalline differential operator

Definition

For XX a smooth scheme over a field kk the sheaf π’Ÿ=π’Ÿ X\mathcal{D} = \mathcal{D}_X of crystalline differential operators is the the β€œenveloping algebroid of the tangent Lie algebroid” of XX: to an affine Uβ†’XU \to X it assigns the algebra that is generated over π’ͺ(U)\mathcal{O}(U) from the π’ͺ(U)\mathcal{O}(U)-module Vect(U)Vect(U) of vector fields (derivations of π’ͺ(U)\mathcal{O}(U)), subject to the relations

v 1β‹…v 2βˆ’v 2β‹…v 1=[v 1,v 2] v_1 \cdot v_2 - v_2 \cdot v_1 = [v_1, v_2]

and

v 1β‹…fβˆ’fβ‹…v 1=v 1(f) v_1 \cdot f - f \cdot v_1 = v_1(f)

for all v 1,v 2∈Vect(U)v_1, v_2 \in Vect(U) and f∈π’ͺ(U)f \in \mathcal{O}(U).

Characteristic zero

If the field kk has characteristic 0, then π’Ÿ\mathcal{D} is the ordinary sheaf of differential operators (Berthelot-Ogus, Theroem 2.15).

Positive characteristic

If the field kk has positive characteristic, then π’Ÿ\mathcal{D} has a large center: the algebra O T *X (1)O_{T^\ast X^{(1)}} of functions on the Frobenius twist of the cotangent bundle. Furthermore, π’Ÿ\mathcal{D} is Azumaya over its center (Bezrukavnikov-MirkoviΔ‡-Rumynin, Theorem 2.2.3).

References

  • P. Berthelot and A. Ogus. Notes on crystalline cohomology. Princeton University Press, 1978.

  • R. Bezrukavnikov, Noncommutative Counterparts of the Springer Resolution (pdf) c.f. Β§3.1

  • R. Bezrukavnikov, I. MirkoviΔ‡, and D. Rumynin, with an appendix by R. Bezrukavnikov and S. Riche. Localization of modules for a semisimple Lie algebra in prime characteristic, Ann. of Math. (2) 167 (2008), no. 3, 945–991.

Last revised on July 27, 2024 at 13:58:52. See the history of this page for a list of all contributions to it.