A -ideal is a collection of sets (either subsets of an ambient set or pure sets) that are considered ‘small’ in some fashion. Unlike the notion of ‘small’ in small category, this is not expected to be closed under most infinitary operations, but it is expected to be closed under countably infinitary operations, in particular under countable union.
If we use ‘large’ sets instead, then we have a -filter.
Let be a set. Then a -ideal on is a collection of subsets of such that: 1. If and , then ; 2. If , then there exists such that and ; in light of (1), may be assumed to be the union itself. 3. Some set belongs to ; in light of (1), the empty set .
A base of a -ideal is any collection satisfying (2,3); a base is precisely what generates a -ideal by closing under subsets. A subbase of a -ideal is any collection at all; a subbase generates a base by closing under countable unions.
Instead of a set, may easily be a proper class; then the elements of may be restricted to subclasses that are actually sets. One may take to be the class of all pure sets; from the perspective of material set theory, this actually includes the general case above.
As defined above, a -ideal is a subset of the power set (or power class) ; we can just as easily make a subset of any complete lattice . Actually, it works just as well if if replaced by a sup-semilattice with all countablary suprema, or probably even more generally (see ideal for some idea of how to do that). Note the grammar: a -ideal in but on (which is the same as in ).
Dually, a -filter on is a collection of subsets of such that: 1. If and , then ; 2. If , then there exists such that and ; in light of (1), may be assumed to be the intersection itself. 3. Some set belongs to ; in light of (1), the improper subset .
Using de Morgan duality, -filters and -ideals are essentially the same; we have
and vice versa. In constructive mathematics, however, they are not equivalent. Also, the two notions are not equivalent when is a proper class.
Of course, any -ideal in an ideal. A -ideal is a -ring in its own right. In fact, a -ideal on is precisely simultaneously an ideal in and a sub--ring of . Dual results hold for -filters.
Last revised on November 13, 2013 at 19:17:42. See the history of this page for a list of all contributions to it.