nLab
dependent sequence
Redirected from "dependent sequence type".
Contents
Idea
In dependent type theory , a sequence in a type A A is a family of elements n : ℕ ⊢ x ( n ) : A n:\mathbb{N} \vdash x(n):A , or equivalently, a function x : ℕ → A x:\mathbb{N} \to A with domain of the natural numbers. A dependent sequence is like a sequence but in which we allow A A to depend on the natural numbers.
Definition
Given a family of types indexed by the natural numbers n : ℕ ⊢ A ( n ) n:\mathbb{N} \vdash A(n) , a dependent sequence can be defined as
a family of elements n : ℕ ⊢ x ( n ) : A ( n ) n:\mathbb{N} \vdash x(n):A(n)
a dependent sequential net ( x : ℕ ⊢ P ( x ) ; x : ℕ , p : P ( x ) ⊢ f ( x , p ) : B ( x ) , x : ℕ ⊢ isInhab ( x ) : [ P ( x ) ] ) (x:\mathbb{N} \vdash P(x); x:\mathbb{N}, p:P(x) \vdash f(x, p):B(x), x:\mathbb{N} \vdash \mathrm{isInhab}(x):\left[P(x)\right]) for which the dependent type P ( x ) P(x) is a contractible type for all natural numbers x : ℕ x:\mathbb{N}
a dependent correspondence x : ℕ , y : B ( x ) ⊢ R ( x , y ) x:\mathbb{N}, y:B(x) \vdash R(x, y) for which the dependent type ∑ y : B ( x ) R ( x , y ) \sum_{y:B(x)} R(x, y) is a contractible type for all natural numbers x : ℕ x:\mathbb{N} .
an element of the dependent function type x : ( n : ℕ ) → A ( n ) x:(n:\mathbb{N}) \to A(n)
Dependent sequence types
A dependent sequence type is simply the dependent function type ( n : ℕ ) → A ( n ) (n:\mathbb{N}) \to A(n) , and thus comes with the following rules:
Formation rules for dependent sequence types:
Γ , n : ℕ ⊢ A ( n ) type Γ ⊢ ( n : ℕ ) → A ( n ) type \frac{\Gamma, n:\mathbb{N} \vdash A(n) \; \mathrm{type}}{\Gamma \vdash (n:\mathbb{N}) \to A(n) \; \mathrm{type}}
Introduction rules for dependent sequence types:
Γ , n : ℕ ⊢ A ( n ) type Γ , n : ℕ ⊢ a ( n ) : A ( n ) Γ ⊢ λ ( n : ℕ ) . a ( n ) : ( n : ℕ ) → A ( n ) \frac{\Gamma, n:\mathbb{N} \vdash A(n) \; \mathrm{type} \quad \Gamma, n:\mathbb{N} \vdash a(n):A(n)}{\Gamma \vdash \lambda(n:\mathbb{N}).a(n):(n:\mathbb{N}) \to A(n)}
Elimination rules for dependent sequence types:
Γ , n : ℕ ⊢ A ( n ) type Γ , a : ( n : ℕ ) → A ( n ) , n : ℕ ⊢ ev ( a , n ) : A ( n ) \frac{\Gamma, n:\mathbb{N} \vdash A(n) \; \mathrm{type}}{\Gamma, a:(n:\mathbb{N}) \to A(n), n:\mathbb{N} \vdash \mathrm{ev}(a, n):A(n)}
Computation rules for dependent sequence types:
Γ , n : ℕ ⊢ A ( n ) type Γ , n : ℕ ⊢ a ( n ) : A ( n ) Γ , m : ℕ ⊢ β Π ( m ) : ev ( λ ( n : ℕ ) . a ( n ) , m ) = A ( m ) a ( m ) \frac{\Gamma, n:\mathbb{N} \vdash A(n) \; \mathrm{type} \quad \Gamma, n:\mathbb{N} \vdash a(n):A(n)}{\Gamma, m:\mathbb{N} \vdash \beta_\Pi(m):\mathrm{ev}(\lambda(n:\mathbb{N}).a(n), m) =_{A(m)} a(m)}
Uniqueness rules for dependent sequence types:
Γ , n : ℕ ⊢ A ( n ) type Γ , a : ( n : ℕ ) → A ( n ) ⊢ η Π ( a ) : a = ( n : ℕ ) → A ( n ) λ ( n : ℕ ) . a ( n ) \frac{\Gamma, n:\mathbb{N} \vdash A(n) \; \mathrm{type}}{\Gamma, a:(n:\mathbb{N}) \to A(n) \vdash \eta_\Pi(a):a =_{(n:\mathbb{N}) \to A(n)} \lambda(n:\mathbb{N}).a(n)}
Dependent sequence types also have their own extensionality principle, called dependent sequence extensionality . This states that given two dependent sequences a : ( n : ℕ ) → A ( n ) a:(n:\mathbb{N}) \to A(n) and b : ( n : ℕ ) → A ( n ) b:(n:\mathbb{N}) \to A(n) there is an equivalence of types between the identity type a = ( n : ℕ ) → A ( n ) b a =_{(n:\mathbb{N}) \to A(n)} b and the dependent sequence type ( n : ℕ ) → ( a ( n ) = A ( n ) b ( n ) ) (n:\mathbb{N}) \to (a(n) =_{A(n)} b(n)) :
Γ , n : ℕ ⊢ A ( n ) type Γ , a : ( n : ℕ ) → A ( n ) , b : ( n : ℕ ) → A ( n ) ⊢ dseqext ( a , b ) : ( a = ( n : ℕ ) → A ( n ) b ) ≃ ( n : ℕ ) → ( a ( n ) = A ( n ) b ( n ) ) \frac{\Gamma, n:\mathbb{N} \vdash A(n) \; \mathrm{type}}{\Gamma,a:(n:\mathbb{N}) \to A(n), b:(n:\mathbb{N}) \to A(n) \vdash \mathrm{dseqext}(a, b):(a =_{(n:\mathbb{N}) \to A(n)} b) \simeq (n:\mathbb{N}) \to (a(n) =_{A(n)} b(n))}
Dependent sequence types are used in strongly predicative mathematics , where one does not have dependent function types , to construct the natural numbers type , as dependent sequence types are used in the elimination rules , computation rules , and uniqueness rules of the natural numbers type:
Elimination rules for the natural numbers type:
Γ , x : ℕ ⊢ C ( x ) type Γ ⊢ c 0 : C ( 0 ) Γ ⊢ c s : ∏ x : ℕ C ( x ) → C ( s ( x ) ) Γ ⊢ n : ℕ Γ ⊢ ind ℕ C ( c 0 , c s , n ) : C ( n ) \frac{\Gamma, x:\mathbb{N} \vdash C(x) \; \mathrm{type} \quad \Gamma \vdash c_0:C(0) \quad \Gamma \vdash c_s:\prod_{x:\mathbb{N}} C(x) \to C(s(x)) \quad \Gamma \vdash n:\mathbb{N}}{\Gamma \vdash \mathrm{ind}_\mathbb{N}^C(c_0, c_s, n):C(n)}
Computation rules for the natural numbers type:
Γ , x : ℕ ⊢ C ( x ) type Γ ⊢ c 0 : C ( 0 ) Γ ⊢ c s : ∏ x : ℕ C ( x ) → C ( s ( x ) ) Γ ⊢ β ℕ 0 ( c 0 , c s ) : Id C ( 0 ) ind ℕ C ( c 0 , c s , 0 ) , c 0 ) \frac{\Gamma, x:\mathbb{N} \vdash C(x) \; \mathrm{type} \quad \Gamma \vdash c_0:C(0) \quad \Gamma \vdash c_s:\prod_{x:\mathbb{N}} C(x) \to C(s(x))}{\Gamma \vdash \beta_\mathbb{N}^0(c_0, c_s):\mathrm{Id}_{C(0)}\mathrm{ind}_\mathbb{N}^C(c_0, c_s, 0), c_0)} Γ , x : ℕ ⊢ C ( x ) type Γ ⊢ c 0 : C ( 0 ) Γ ⊢ c s : ∏ x : ℕ C ( x ) → C ( s ( x ) ) Γ ⊢ n : ℕ Γ ⊢ β ℕ s ( c 0 , c s , n ) : Id C ( s ( n ) ) ( ind ℕ C ( c 0 , c s , s ( n ) ) , c s ( n ) ( ind ℕ C ( c 0 , c s , n ) ) ) \frac{\Gamma, x:\mathbb{N} \vdash C(x) \; \mathrm{type} \quad \Gamma \vdash c_0:C(0) \quad \Gamma \vdash c_s:\prod_{x:\mathbb{N}} C(x) \to C(s(x)) \quad \Gamma \vdash n:\mathbb{N}}{\Gamma \vdash \beta_\mathbb{N}^s(c_0, c_s, n):\mathrm{Id}_{C(s(n))}(\mathrm{ind}_\mathbb{N}^C(c_0, c_s, s(n)), c_s(n)(\mathrm{ind}_\mathbb{N}^C(c_0, c_s, n)))}
Uniqueness rules for the natural numbers type:
Γ , x : ℕ ⊢ C ( x ) type Γ ⊢ c : ∏ x : ℕ C ( x ) Γ ⊢ n : ℕ Γ ⊢ η ℕ ( c , n ) : Id C ( n ) ( ind ℕ C ( c ( 0 ) , λ x : ℕ . c ( s ( x ) ) , n ) , c ( n ) ) \frac{\Gamma, x:\mathbb{N} \vdash C(x) \; \mathrm{type} \quad \Gamma \vdash c:\prod_{x:\mathbb{N}} C(x) \quad \Gamma \vdash n:\mathbb{N}}{\Gamma \vdash \eta_\mathbb{N}(c, n):\mathrm{Id}_{C(n)}(\mathrm{ind}_\mathbb{N}^C(c(0), \lambda x:\mathbb{N}.c(s(x)), n), c(n))}
It is also used in defining the axiom of countable choice in dependent type theory :
Γ , n : ℕ ⊢ A ( n ) type Γ , a : ( n : ℕ ) → [ A ( n ) ] ⊢ countablechoice ( a ) : [ ( n : ℕ ) → A ( n ) ] \frac{\Gamma, n:\mathbb{N} \vdash A(n) \; \mathrm{type}}{\Gamma, a:(n:\mathbb{N}) \to \left[A(n)\right] \vdash \mathrm{countablechoice}(a):\left[(n:\mathbb{N}) \to A(n)\right]}
See also
tuple , sequence , function
dependent tuple , dependent sequence , dependent function
countable choice
ascending chain condition , Noetherian ring , Noetherian module , Noetherian bimodule
descending chain condition , Artinian ring , Artinian module? , Artinian bimodule
sequential spectrum , sequential spectrum type
Last revised on July 26, 2023 at 20:09:48.
See the history of this page for a list of all contributions to it.