nLab double bicategory


A double bicategory is a structure similar to a double category, but where composition of both vertical and horizontal arrows is only weakly associative and unital.

To define this notion, we need to include extra shapes of 2-dimensional cells in addition to the squares that appear in a double category: we also need vertical and horizontal globes. The reason is that if we have associators for horizontal morphisms given by squares, it appears to be impossible to formulate the pentagon identity for these squares unless either 1) composition of vertical morphisms is strict, or 2) we introduce cells with new shapes. In case 1) — that is, if associativity and the unit laws hold strictly in one direction — we have a ‘pseudo double category’, as studied by Grandis, Paré and Fiore. (See double category for more on this concept.) In case 2) we have a double bicategory.

The concept and terminology here were introduced by Verity in his thesis (Verity 1992). The definition can also be found in (Morton 2009) (especially Section 3: Double bicategories (direct pdf link)) and (Morton 2007).

The term ‘double bicategory’ may be confusing, since while a double category is a category internal to CatCat, a double bicategory is not the fully general sort of bicategory internal to BicatBicat. This issue is addressed in Morton’s work.

A double bicategory can also be regarded as a special sort of intercategory.


  • Dominic Verity, Enriched categories, internal categories and change of base Ph.D. thesis, Cambridge University (1992), reprinted as Reprints in Theory and Applications of Categories, No. 20 (2011) pp 1-266 (TAC)

  • Jeffrey C. Morton, Double bicategories and double cospans, Journal of Homotopy and Related Structures, Vol. 4 (2009), No. 1, pp. 389-428,

    journal abstract page, arXiv:math/0611930,

  • Jeffrey C. Morton, Extended TQFT’s and Quantum Gravity, PhD thesis University of California, Riverside (2007), arXiv:0710.0032.

Last revised on September 27, 2021 at 06:17:05. See the history of this page for a list of all contributions to it.