nLab
gerbe (in differential geometry)

Context

Differential geometry

synthetic differential geometry

Introductions

from point-set topology to differentiable manifolds

geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry

Differentials

V-manifolds

smooth space

Tangency

The magic algebraic facts

Theorems

Axiomatics

cohesion

tangent cohesion

differential cohesion

graded differential cohesion

id id fermionic bosonic bosonic Rh rheonomic reduced infinitesimal infinitesimal & étale cohesive ʃ discrete discrete continuous * \array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& Rh & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& ʃ &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }

Models

Lie theory, ∞-Lie theory

differential equations, variational calculus

Chern-Weil theory, ∞-Chern-Weil theory

Cartan geometry (super, higher)

Differential cohomology

\infty-Chern-Weil theory

This is a sub-entry for gerbe.

For related entries see

Contents

Idea

Gerbes give a nice way to group together bundle data on a smooth manifold, but gerbes also naturally define degree two cohomology. Thus the idea of using gerbes in differential geometry is to have a nice language that relates geometric concepts such as connections and curvature to cohomological classifications.

In addition, one can use the analogies above that are made precise with gerbes to define other new concepts such as 3-curvature and “local” fiberwise connections.

Definitions

  • Let XX be a smooth manifold. A Dixmier-Douady sheaf of groupoids over XX is a ̲ X *\underline{\mathbb{C}}_X^*- gerbe on XX where ̲ X *\underline{\mathbb{C}}_X^* is the sheaf of smooth *\mathbb{C}^*-valued functions (not to be confused with the constant sheaf X *\mathbb{C}_X^*).

  • We define (1)\mathbb{Z}(1) to be the term in the exponential sequence on XX: 0(1)̲ X̲ X *00\to \mathbb{Z}(1)\to \underline{\mathbb{C}}_X \to \underline{\mathbb{C}}_X^*\to 0.

Preliminaries

Taking the associated sequence in cohomology to the exponential sequence gives us an isomorphism H 2(X,̲ X *)H 3(X,(1))H^2(X, \underline{\mathbb{C}}_X^*)\overset\sim\to H^3(X, \mathbb{Z}(1)).

We have a canonical isomorphism between the group of equivalence classes of Dixmier-Douady sheaves of groupoids over XX (basically by the definition of 𝒜\mathcal{A}-gerbe) and H 2(X,̲ X *)H 3(X,(1))H^2(X, \underline{\mathbb{C}}_X^*)\simeq H^3(X, \mathbb{Z}(1)).

Geometric Interpretation of H 3(X,(1))H^3(X, \mathbb{Z}(1))

Idea: Classes in H 3(X,(1))H^3(X, \mathbb{Z}(1)) correspond to principal GG- bundles over XX where GG is the projective linear group of a separable Hilbert space, namely C (𝕋)C^\infty (\mathbb{T}).

Matt: Actually, a slight issue has arisen. Most of the things I thought would go here actually already appear in other places even though they aren’t grouped as coming from the same idea.

For instance, bundle gerbe contains the geometric interpretation of H 3(X,(1))H^3(X, \mathbb{Z}(1)). Also, 3-curvature and fiber-wise connections occur at connection on a bundle gerbe. Although I think there is still a lot to say, I’m not convinced that “gerbe (in differential geometry)” is necessary anymore…

References

  • Jean-Luc Brylinski Loop Spaces, Characteristic Classes, and Geometric Quantization

  • I. Moerdijk, Introduction to the language of stacks and gerbes (arXiv)

  • Larry Breen, Notes on 1- and 2-gerbes (arXiv)

Further references are given in the other entries on gerbes.

Revised on January 17, 2011 09:03:09 by Urs Schreiber (89.204.137.109)