graph minor



Let GG and HH be simple graphs. Then HH is a graph minor of GG if it is isomorphic to a graph obtained by applying a sequence of operations of the following sort, starting from GG:

  • Removing edges;

  • Removing isolated points;

  • Contracting edges, where contracting an edge means removing it and identifying its endpoints.

Graph minors can be viewed as certain types of subquotients in an appropriate category of graphs.

Categorical POV

We take the point of view that a simple graph is essentially the same thing as a set VV equipped with a reflexive symmetric relation EE, and a morphism of simple graphs is a function which respects these relations. Indeed, such a relation determines and is uniquely determined by a simple graph GG where for given vertices x,yVx, y \in V, there is an edge between xx and yy in GG iff both E(x,y)E(x, y) and xyx \neq y.

Notice that contraction of edges yields a quotient in this category. For example, if we want to contract a collection of edges by identifying certain points along an equivalence relation RR, that is via some quotient map q:VV/Rq \colon V \to V/R, then we simply take the image of the composite

EV×Vq×qV/R×V/R;E \hookrightarrow V \times V \stackrel{q \times q}{\to} V/R \times V/R;

notice this image is a reflexive symmetric relation on V/RV/R. While it might seem more natural to use instead an irreflexive relation to express loop-free graphs (a relation EE being irreflexive if it has empty intersection with the diagonal in V×VV \times V), the fact of the matter is that irreflexive relations are not closed under the taking of images, and the category of sets with symmetric irreflexive relations and relation-preserving morphisms does not admit the forming of such quotients.

Thus, we let SimpGphSimpGph denote the category of sets equipped with a reflexive symmetric relation. This category has many convenient properties:


SimpGphSimpGph is the category of ¬¬\neg\neg-separated presheaves on the full subcategory of FinSetFinSet consisting of the objects 1,21, 2. It is thus a Grothendieck quasitopos. In particular, both it and its opposite SimpGph opSimpGph^{op} are regular categories.

Essentially the same observations apply to the category of finite simple graphs: it too is an extensive quasitopos.

The category of simple graphs is also topological, and cohesive in the following sense:


The forgetful functor Γ=hom(1,):SimpGphSet\Gamma = \hom(1, -): SimpGph \to Set is faithful, in fact exhibits SimpGphSimpGph as a topological concrete category, and is cohesive: there is an adjoint string ΠΔΓ:SetSimpGph\Pi \dashv \Delta \dashv \Gamma \dashv \nabla: Set \to SimpGph, with Π:SimpGphSet\Pi: SimpGph \to Set product-preserving.

Of course Δ\Delta assigns to a set XX the discrete graph on XX, and \nabla the codiscrete graph, while Π(G)\Pi(G) is the set of connected components of GG. Let γ:1ΔΠ\gamma: 1 \to \Delta \Pi denote the unit of ΠΔ\Pi \dashv \Delta; the component γG:GΔΠ(G)\gamma G: G \to \Delta \Pi (G) takes a vertex vGv \in G to the connected component to which it belongs. Notice that γG\gamma G is a regular epi.


A contraction map between simple graphs is a morphism π:GG\pi: G \to G' that arises by pushing out a map of the form γK\gamma K along some map f:KGf: K \to G:

K f G γK po π Π(K) G\array{ K & \stackrel{f}{\to} & G \\ \mathllap{\gamma K} \downarrow & po & \downarrow \mathrlap{\pi} \\ \Pi(K) & \to & G' }

is a pushout square. If GGG \to G' is a contraction map, we also say GG' is a contraction of GG.

It is immediate that a contraction map is a regular epi, since every γK\gamma K is regular epi.


Contraction maps are closed under composition.


A graph HH is a minor of a graph GG if it arises as a subobject of some contraction of GG:

G contraction H G\array{ & & G \\ & & \downarrow \mathrlap{contraction} \\ H & \rightarrowtail & G' }

The subquotient relation is reflexive and transitive.


Reflexivity is clear. For transitivity, we compose subquotients by taking a pushout square as follows.

G G G mono mono H H mono J\array{ G & \twoheadrightarrow & G' & \twoheadrightarrow & G'' \\ & & ^\mathllap{mono} \uparrow & & \uparrow^\mathrlap{mono} \\ & & H & \twoheadrightarrow & H' \\ & & & & \uparrow^\mathrlap{mono} \\ & & & & J }

where we use the simple fact that the pushout of a mono along an arrow in SimpGphSimpGph is a mono (because VertVert reflects monos and preserves monos and pushouts, plus the fact that the pushout of a mono in SetSet is a mono).

For finite graphs, the subquotient relation is also antisymmetric (if GG and HH are minors of one another, then they are isomorphic). Indeed, if either the arrow GGG \twoheadrightarrow G' or the arrow HGH \hookrightarrow G' is not an isomorphism, then HH has strictly fewer edges and vertices than GG. This is clearly not the case for infinite graphs (e.g., the infinite rooted binary tree without leaves contains as a subgraph a disjoint sum of two copies of itself).

(I intend to expand this section, eventually. Hopefully one can develop a categorical story about graph minors in particular.)

Minor-closed families

  • The collection of forests is closed under the graph minor relation.

  • The collection of planar graphs is closed under the graph minor relation.

Graph minor theorem

This celebrated result of Robertson and Seymour says that no collection of finite graphs, ordered by the graph minor relation, has an infinite antichain. Equivalently, that in any collection of finite graphs, there are only finitely many elements which are minimal with respect to the graph minor relation.

As a corollary, any class FF of finite graphs which is closed under minors admits a forbidden minor characterization: is precisely the class of graphs which do not have any members of a specific finite family of graphs as a minor. (Proof: the complement of FF in the poset of finite graphs has finitely many minimal members. Then, xx belongs to FF iff none of these minimal members occurs as a minor of xx.

For example, the class of forests is precisely the class of finite graphs which do not have a triangle K 3K_3 as a minor. The class of planar graphs is precisely the class of finite graphs which do not have K 5K_5 or K 3,3K_{3, 3} as a minor.

Forbidden minor characterizations also exist for certain classes of matroids. (See for example Wikipedia here.)


  • Wikipedia article on graph minors (link)
Revised on October 24, 2016 16:15:16 by Todd Trimble (