nLab
groupoid infinity-action
Contents
Contents
Idea
The generalization of ∞-group ∞-actions to ∞ \infty -actions of groupoid objects in an (∞,1)-category .
Definition
Definition
For 𝒢 • ∈ Grpd ∞ ( H ) \mathcal{G}_\bullet \in Grpd_\infty(\mathbf{H}) a groupoid object , P ∈ H P \in \mathbf{H} any object equipped with a morphism a : P → 𝒢 0 a \colon P \to \mathcal{G}_0 to the object of objects of 𝒢 \mathcal{G} , a 𝒢 • \mathcal{G}_\bullet -groupoid ∞-action on X X with anchor a a is a groupoid ( X / / 𝒢 ) • (X//\mathcal{G})_\bullet over 𝒢 • \mathcal{G}_\bullet of the form
⋮ ⋮ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ X × 𝒢 0 𝒢 2 → 𝒢 2 ↓ ↓ ↓ ↓ ↓ ↓ X × 𝒢 0 𝒢 1 → 𝒢 1 ↓ ↓ ↓ ↓ X → a 𝒢 0 ,
\array{
\vdots && && \vdots
\\
\downarrow \downarrow \downarrow \downarrow
&& &&
\downarrow \downarrow \downarrow \downarrow
\\
X \underset{\mathcal{G}_0}{\times} \mathcal{G}_2
&& \to && \mathcal{G}_2
\\
\downarrow \downarrow \downarrow && &&
\downarrow \downarrow \downarrow
\\
X \underset{\mathcal{G}_0}{\times} \mathcal{G}_1
&& \to && \mathcal{G}_1
\\
\downarrow \downarrow && && \downarrow \downarrow
\\
X && \stackrel{a}{\to} && \mathcal{G}_0
}
\,,
where the homotopy fiber products on the left are those of the anchor a a with the leftmost 0-face map 𝒢 ( { 0 } ↪ { 0 , ⋯ , n } ) \mathcal{G}_{(\{0\} \hookrightarrow \{0, \cdots, n\})} and the horizontal morphisms are the corresponding projections on the second factor.
We call ( X / / 𝒢 ) • (X//\mathcal{G})_\bullet also the action groupoid of the action of 𝒢 • \mathcal{G}_\bullet on ( X , a ) (X,a) and call its realization X → ( X / / 𝒢 ) X \to (X//\mathcal{G}) the homotopy quotient of the action.
Last revised on November 5, 2014 at 09:05:54.
See the history of this page for a list of all contributions to it.