Contents

# Contents

## Introduction

We give a proof that groupoids model homotopy 1-types. More precisely, we construct a Quillen equivalence between a model structure on the category of groupoids, and a certain model structure on the category of cubical sets.

## One direction of the equivalence

###### Proposition

The adjunction natural transformation $\epsilon : \Pi^{\leq 2}_{1} \circ N^{\leq 2} \rightarrow id$ is a natural isomorphism.

###### Proof

Let $\mathcal{A}$ be a groupoid. Let $r(\mathcal{A}) : \mathcal{A} \rightarrow \Pi^{\leq 2}_{1} \circ N^{\leq 2}$ be the functor defined as follows.

1) On objects it is the identity.

2) To an arrow $f : a_{0} \rightarrow a_{1}$ of $\mathcal{A}$, we associate the arrow

$\array{ a_{0} & \overset{f}{\rightarrow} & a_{1} \overset{id}{\leftarrow} & a_{1} }$

of $\Pi^{\leq 2}_{1} \circ N^{\leq 2}(\mathcal{A})$.

Because of 1 b) ii) of Notation 3 of fundamental groupoid of a cubical set and the cubical nerve of a groupoid, the following diagram of commutative squares illustrates that $r(g \circ f) = r(g) \circ r(f)$, where $f : a_{0} \rightarrow a_{1}$ and $g : a_{1} \rightarrow a_{2}$ are arrows of $\mathcal{A}$.

$\array{ a_{0} & \overset{f}{\rightarrow} & a_{1} & \overset{id}{\rightarrow} & a_{1} & \overset{g}{\rightarrow} & a_{2} & \overset{id}{\leftarrow} & a_{2} \\ id \downarrow & & \downarrow g & & \downarrow g & & \downarrow id & & \downarrow id \\ a_{0} & \underset{g \circ f}{\rightarrow} & a_{2} & \underset{id}{\leftarrow} & a_{2} & \underset{id}{\rightarrow} & a_{2} & \underset{id}{\leftarrow} & a_{2} }$

That $r(id) = id$ follows immediately from 1 b) i) of Notation 3 of fundamental groupoid of a cubical set and the cubical nerve of a groupoid.

It is clear that $\epsilon(\mathcal{A}) \circ r(\mathcal{A})$ is $id(\mathcal{A})$.

Moreover, because of 1 b) ii) of Notation 3 of fundamental groupoid of a cubical set and the cubical nerve of a groupoid, the following diagram of commutative squares illustrates that $r(\mathcal{A}) \circ \epsilon(\mathcal{A})$ is $id(\mathcal{A})$.

$\array{ a_{0} & \overset{f_{1}}{\rightarrow} & a_{1} & \overset{g_{1}}{\leftarrow} & a_{2} & \cdots & a_{2n-2} & \overset{f_{n}}{\rightarrow} & a_{2n-1} & \overset{g_{n}}{\leftarrow} & a_{2n} \\ id \downarrow & & \downarrow A & & \downarrow B & & \downarrow C & & \downarrow g_{n}^{-1} & & \downarrow id \\ a_{0} & \underset{D}{\rightarrow} & a_{2n} & \underset{id}{\leftarrow} & a_{2n} & \cdots & a_{2n} & \underset{id}{\rightarrow} & a_{2n} & \underset{id}{\leftarrow} & a_{2n} }$

Here

$\array{ a_{0} & \overset{f_{1}}{\rightarrow} & a_{1} \overset{g_{1}}{\leftarrow} & a_{2} & \cdots & a_{2n-2} & \overset{f_{n}}{\rightarrow} & a_{2n-1} \overset{g_{n}}{\leftarrow} & a_{2n} }$

is any zig-zag of arrows of $\mathcal{A}$, and the arrows A, B, C, and D are given as follows.

A) $g_{n}^{-1} \circ f_{n} \circ \cdots g_{2}^{-1} \circ f_{2} \circ g_{1}^{-1}$

B) $g_{n}^{-1} \circ f_{n} \circ \cdots g_{2}^{-1} \circ f_{2}$

C) $g_{n}^{-1} \circ f_{n}$

D) $g_{n}^{-1} \circ f_{n} \circ \cdots g_{2}^{-1} \circ f_{2} \circ g_{1}^{-1} \circ f_{1}$

We also make use of 1 b) i) of Notation 3 of fundamental groupoid of a cubical set and the cubical nerve of a groupoid in identifying

$\array{a_{0} & \underset{D}{\rightarrow} & a_{2n} & \underset{id}{\leftarrow} & a_{2n} & \cdots & a_{2n} & \underset{id}{\rightarrow} & x_{2n} & \underset{id}{\leftarrow} & a_{2n}}$

with

$\array{a_{0} & \underset{D}{\rightarrow} & a_{2n} & \underset{id}{\leftarrow} a_{2n}}$

as required.

###### Corollary

The adjunction natural transformation $\Pi_{1} \circ N \rightarrow id$ is a natural isomorphism.

###### Proof

Since $tr_{2}$ is fully faithful, the adjunction natural transformation $id \rightarrow tr_{2} cosk_{2}$ is a natural isomorphism. The corollary follows from this and Proposition .

## Other direction of the equivalence

To be written.

Last revised on April 27, 2016 at 16:10:50. See the history of this page for a list of all contributions to it.