nLab post-Lie algebra

Introduced in

  • Bruno Vallette, Homology of generalized partition posets, J. Pure Appl. Algebra 208 (2) (2007) 699–725

Other works

  • C. Bai, L. Guo, X. Ni, Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and PostLie algebras, Commun. Math. Phys. 297 (2) (2010) 553–596

  • C. Bai, L. Guo, Y. Sheng and R. Tang, Post-groups, (Lie-)Butcher groups and the Yang-Baxter equation. Math. Ann. 388 (2024), 3127–3167.

  • Y. Bruned and F. Katsetsiadis, Post-Lie algebras in regularity structures. Forum Math. Sigma 11 (2023), 1–20.

  • M. J. H. Al-Kaabi, K. Ebrahimi-Fard, D. Manchon, Post-Lie Magnus expansion and BCH-recursion, SIGMA 18, (2022), 023, 16 pages.

  • Mahdi Jasim Hasan Al-Kaabi, Kurusch Ebrahimi-Fard, Dominique Manchon, Hans Z. Munthe-Kaas, Algebraic aspects of connections: From torsion, curvature, and post-Lie algebras to Gavrilov’s double exponential and special polynomials, J. Noncomm. Geom. doi arXiv:2205.04381

  • A. Lundervold, H.Z. Munthe-Kaas, On post-Lie algebras, Lie Butcher series and moving frames, Found. Comput. Math. 13 (4) (2013) 583–613

  • I. Mencattini, A. Quesney, P. Silva, Post-symmetric braces and integration of post-Lie algebras, J. Alg. 556 (2020) 547–580

category: algebra

Last revised on September 11, 2024 at 14:53:15. See the history of this page for a list of all contributions to it.