nLab prismatization

Contents

Contents

Idea

Prismatization is a stacky approach to prismatic cohomology developed independently by Drinfeld in #Drinfeld20 and Bhatt-Lurie in #BhattLurie22 and #BhattLurie22b.

Motivation: Linear algebra via stacks

The reference for this section is Section 2 of #BhattNotes.

Definitions

Definition

(Definition 3.1.4 of #BhattLurie22a, Definition 5.13 of #BhattNotes) Let RR be a p-nilpotent ring and W(R)W(R) its ring of Witt vectors. A Cartier-Witt divisor on RR is an invertible W(R)W(R)-module II together with a morphism α:IW(R)\alpha:I\to W(R) of W(R)W(R)-modules such that

  • The image of the map IW(R)RI\to W(R)\twoheadrightarrow R is a nilpotent ideal of RR.
  • The image of the map IW(R)δW(R)I\to W(R)\xrightarrow{\delta} W(R) generates the unit ideal of W(R)W(R).

Definition

(Definition 5.1.6 of #BhattNotes) Let XX be a bounded pp-adic formal scheme. The prismatization X ΔX^{\Delta} is the presheaf over Spf( p)\mathrm{Spf}(\mathbb{Z}_{p}) defined as follows. For a pp-nilpotent ring RR, X Δ(R)X^{\Delta}(R) is the groupoid of Cartier-Witt divisors on RR together with a map Spec(Cone(W(R)/I))X\mathrm{Spec}(\mathrm{Cone}(W(R)/I))\to X of derived Spf( p)\mathrm{Spf}(\mathbb{Z}_{p})-schemes.

The Cartier-Witt stack

The prismatization Spf( p) Δ\mathrm{Spf}(\mathbb{Z}_{p})^{\Delta} of Spf( p)\mathrm{Spf}(\mathbb{Z}_{p}) is also called the Cartier-Witt stack, and denoted WCart\mathrm{WCart} or p Δ\mathbb{Z}_{p}^{\Delta}.

Filtered prismatization

The reference for this section is Section 5.3 of #BhattNotes.

Definition

(Definition 5.2.4 of #BhattNotes) Let RR be a pp-nilpotent ring. Let WW be the ring scheme of Witt vectors over Spf( p)\mathrm{Spf}(\mathbb{Z}_{p}). Let F:WF *WF:W\to F_{*}W be the Frobenius. An admissible WW-module over RR is an affine WW-module scheme MM which can be realized as an extension of a twisted form of F *MF_{*}M by a twisted form of the 𝔾 a #\mathbb{G}_{a}^{#}, where 𝔾 a #\mathbb{G}_{a}^{#} is the PD-hull of the origin in 𝔾 a\mathbb{G}_{a} over \mathbb{Z}.

Definition

(Definition 5.3.1 of #BhattNotes) Let RR be a pp-nilpotent ring. Let WW be the ring scheme of Witt vectors over Spf( p)\mathrm{Spf}(\mathbb{Z}_{p}). Let F:WF *WF:W\to F_{*}W be the Frobenius. A filtered Cartier-Witt divisor over RR is an admissible WW-module MM over RR and a map MWM\to W such that the induced map F *MF *WF_{\ast}M'\to F_{\ast}W of twisted forms of F *WF_{\ast}W comes from a Cartier-Witt divisor.

Definition

(Definition 5.3.10 of #BhattNotes)

Let XX be a bounded pp-adic formal scheme. Define Spf( p) 𝒩\mathrm{Spf}(\mathbb{Z}_{p})^{\mathcal{N}} to be the stack which takes a pp-nilpotent ring RR to the groupoid Spf( p) 𝒩(R)\mathrm{Spf}(\mathbb{Z}_{p})^{\mathcal{N}}(R) of filtered Cartier-Witt divisors over RR. The filtered prismatization of XX is the stack X 𝒩X^{\mathcal{N}} over p 𝒩\mathbb{Z}_{p}^{\mathcal{N}} obtained via transmutation from 𝔾 a 𝒩 p 𝒩\mathbb{G}_{a}^{\mathcal{N}}\to\mathbb{Z}_{p}^{\mathcal{N}}, where 𝔾 a 𝒩\mathbb{G}_{a}^{\mathcal{N}} is the stack over p 𝒩\mathbb{Z}_{p}^{\mathcal{N}} taking a filtered Cartier-Witt divisor d:MWd:M\to W to RΓ(Spec(R),W/M)R\Gamma(\mathrm{Spec}(R),W/M).

References

Last revised on July 29, 2023 at 03:26:11. See the history of this page for a list of all contributions to it.