nLab quark-meson coupling model

Contents

Context

Fields and quanta

fields and particles in particle physics

and in the standard model of particle physics:

force field gauge bosons

scalar bosons

matter field fermions (spinors, Dirac fields)

flavors of fundamental fermions in the
standard model of particle physics:
generation of fermions1st generation2nd generation3d generation
quarks (qq)
up-typeup quark (uu)charm quark (cc)top quark (tt)
down-typedown quark (dd)strange quark (ss)bottom quark (bb)
leptons
chargedelectronmuontauon
neutralelectron neutrinomuon neutrinotau neutrino
bound states:
mesonslight mesons:
pion (udu d)
ρ-meson (udu d)
ω-meson (udu d)
f1-meson
a1-meson
strange-mesons:
ϕ-meson (ss¯s \bar s),
kaon, K*-meson (usu s, dsd s)
eta-meson (uu+dd+ssu u + d d + s s)

charmed heavy mesons:
D-meson (uc u c, dcd c, scs c)
J/ψ-meson (cc¯c \bar c)
bottom heavy mesons:
B-meson (qbq b)
ϒ-meson (bb¯b \bar b)
baryonsnucleons:
proton (uud)(u u d)
neutron (udd)(u d d)

(also: antiparticles)

effective particles

hadrons (bound states of the above quarks)

solitons

in grand unified theory

minimally extended supersymmetric standard model

superpartners

bosinos:

sfermions:

dark matter candidates

Exotica

auxiliary fields

Contents

Idea

In nuclear physics, the quark-meson coupling model is an effective field theory of nuclei where effective meson-fields are coupled to quark fields.

This is on contrast to quantum hadrodynamics of the form of baryon chiral perturbation theory, such as the Walecka model, where the effective fermion fields are instead the baryons (i.e. the confined bound states of three constituent quarks) with no isolated quarks appearing explicitly.

effective field theories of nuclear physics, hence for confined-phase quantum chromodynamics:

References

  • D. Ebert, T. Feldmann, R. Friedrich, H. Reinhardt, Effective Meson Lagrangian with Chiral and Heavy Quark Symmetries from Quark Flavor Dynamics, Nucl.Phys. B434 (1995) 619-646 (arXiv:hep-ph/9406220)

  • P. A. M. Guichon, K. Saito, E. Rodionov, A. W. Thomas, The role of nucleon structure in finite nuclei, Nucl. Phys. A601:349-379, 1996 (arXiv:nucl-th/9509034)

  • K. Saito, K. Tsushima, A. W. Thomas, Variation of hadron masses in finite nuclei, Phys. Rev. C 55, 2637 (1997) (doi:10.1103/PhysRevC.55.2637)

Relation to quantum hadrodynamics:

  • Koichi Saito, Relationship between Quark-Meson Coupling Model and Quantum Hadrodynamics, Prog. Theor. Phys. 108 (2002) 609-614 (arXiv:nucl-th/0207053)

Last revised on May 12, 2020 at 15:39:23. See the history of this page for a list of all contributions to it.