\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{!-modality} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{type_theory}{}\paragraph*{{Type theory}}\label{type_theory} [[!include type theory - contents]] \hypertarget{modalities_closure_and_reflection}{}\paragraph*{{Modalities, Closure and Reflection}}\label{modalities_closure_and_reflection} [[!include modalities - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{categorical_semantics}{Categorical semantics}\dotfill \pageref*{categorical_semantics} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{modal_term_calculi}{Modal term calculi}\dotfill \pageref*{modal_term_calculi} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In full [[linear logic]]/[[linear type theory]] there is assumed a (comonadic) [[modality]] denoted ``!'' and called the \emph{exponential modality}, whose role is, roughly, to give linear types also a non-linear interpretation. This is also called the ``of course''-modality or the \emph{storage modality}, and sometimes the ``bang''-operation. In classical linear logic (meaning with involutive de Morgan duality), the de Morgan dual of ``!'' is denoted ``?'' and called the ``why not''-modality. In [[categorical semantics]] of linear type theory the !-modality typically appears as a kind of [[Fock space]] construction. If one views [[linear logic]] as [[quantum logic]] (as discussed there), then this means that the !-modality produces [[free field theory|free]] [[second quantization]]. \hypertarget{categorical_semantics}{}\subsection*{{Categorical semantics}}\label{categorical_semantics} Everyone agrees that ! should be a comonad (and ? should be a monad), but there are different ways to proceed from there. The goal is to capture the syntactic rules allowing assumptions of the form $!A$ to be duplicated and discarded. The original definition from \hyperlink{Seely89}{Seely} was: \begin{defn} \label{}\hypertarget{}{} Let $C$ be an $\ast$-[[star-autonomous category|autonomous]] category with [[cartesian products]]. A Seely !-modality on $C$ is a comonad that is a [[strong monoidal functor]] from the [[cartesian monoidal category|cartesian monoidal structure]] to the $\ast$-autonomous monoidal structure, i.e. we have $!(A\times B)\cong !A \otimes !B$ coherently. (There is also a [[coherence]] [[axiom]] that should be imposed; see \hyperlink{Mellies09}{Mellies, section 7.3}.) \end{defn} (Note that in linear logic, the cartesian monoidal structure $\times$ is sometimes denoted by $\&$.) This implies that the [[Kleisli category of a comonad|Kleisli category]] of ! is a [[cartesian closed category]], which is a categorical version of the translation of intuitionistic logic into linear logic. Of course, the above definition depends on the existence of the cartesian product, and relies on the self-duality of an $\ast$-autonomous category to derive the rules for ? from the rules for !. A different definition that doesn't require the existence of $\times$ was given by \hyperlink{BBPH92}{Benton, Bierman, de Paiva, and Hyland}: \begin{defn} \label{}\hypertarget{}{} Let $C$ be a [[closed symmetric monoidal category]]; a !-modality on $C$ is a [[lax monoidal functor|lax monoidal]] comonad such that every !-coalgebra naturally carries the structure of a [[comonoid object]] in the category of coalgebras, such that coalgebra maps are comonoid maps. \end{defn} This definition implies that the category of all !-coalgebras (not just the free ones, i.e. its Kleisli category) is cartesian closed. Note that for a comonad on a [[poset]], every coalgebra is free; thus the world of pure propositional ``logic'' doesn't tell us whether to consider the Kleisli category or the Eilenberg-Moore category for the translation. A more even-handed approach is the following (see \hyperlink{Mellies09}{Mellies}): \begin{defn} \label{}\hypertarget{}{} A \emph{linear-nonlinear adjunction} is a [[monoidal adjunction]] $F : M \rightleftarrows L : G$ in which $L$ is symmetric monoidal and $M$ is cartesian monoidal. The induced !-modality is the comonad $F G$ on $L$. \end{defn} This includes both of the previous definitions where $M$ is taken respectively to be the Kleisli category or the Eilenberg-Moore category of !. On the other hand, the last two definitions are given only for ``intuitionistic'' linear logic, though in the $\ast$-autonomous case one could derive a ? from the ! by de Morgan duality. A definition not requiring the de Morgan duality and describing ! and ? together was given by \hyperlink{BCS96}{Blute, Cockett, and Seely}: \begin{defn} \label{}\hypertarget{}{} Let $C$ be a [[linearly distributive category]] with tensor product $\otimes$ and cotensor product $\parr$. A (!,?)-modality on $C$ consists of: \begin{enumerate}% \item a $\otimes$-monoidal comonad ! and a $\parr$-comonoidal monad ? \item ? is a !-strong monad, and ! is a ∞-strong comonad \item all free !-coalgebras are naturally commutative $\otimes$-comonoids, and all free ∞-algebras are naturally commutative $\parr$-monoids. \end{enumerate} \end{defn} Here a functor $F$ is [[strong functor|strong]] with respect to a lax monoidal functor $G$ if there is a natural transformation $F A \otimes G B \to F(A\otimes G B)$ satisfying some natural axioms, and we similarly require compatibility of the monad and comonad structure transformations. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} $\backslash$begin\{theorem\} Suppose $C$ is a [[cartesian monoidal category]] with finite limits and colimits, and $\bot\in C$ is an object. Then the [[Chu construction]] $Chu(C,\bot)$, which is $\ast$-autonomous with finite limits and colimits, admits a Seely !-modality, namely the [[idempotent comonad]] induced by the [[coreflective subcategory|coreflective]] embedding of $C$. $\backslash$end\{theorem\} $\backslash$begin\{proof\} The embedding of any $C$ in its Chu construction as $A \mapsto (A, [A,\bot], ev)$ is coreflective: the coreflection of $(B^+, B^-, e_B)$ is $(B^+, [B^+,\bot], ev)$. Moreover, this subcategory is closed under the tensor product of $Chu(C,\bot)$, i.e. the embedding $C\hookrightarrow Chu(C,\bot)$ is strong monoidal. The Seely condition therefore means more concretely that the coreflection takes the cartesian product in $Chu(C,\bot)$ to the tensor product of $C$. But when $C$ is cartesian monoidal, its tensor product is also the cartesian product, so this follows from the fact that the coreflection is a [[right adjoint]] and hence preserves products. $\backslash$end\{proof\} \hypertarget{modal_term_calculi}{}\subsection*{{Modal term calculi}}\label{modal_term_calculi} Girard's original presentation of linear logic involved rules that explicitly assumed the presence of $!$ on hypotheses or on entire contexts, such as [[weakening rule|weakening]] and [[contraction rule|contraction]]: \begin{displaymath} \frac{\Gamma \vdash B}{\Gamma, !A\vdash B} \qquad \frac{\Gamma,!A,!A \vdash B}{\Gamma, !A\vdash B} \end{displaymath} and ``promotion'': \begin{displaymath} \frac{!\Gamma \vdash A}{!\Gamma\vdash !A} \end{displaymath} If this is translated into a [[natural deduction]] style term calculus, the resulting rules are more complicated than those of most type formers. This can be avoided using [[adjoint type theory]] with two context zones, one ``nonlinear'' one where contraction and weakening are permitted (and [[admissible rule|admissible]]) and one ``linear'' one where they are not, with $!$ as a modality relating the two zones. Such a ``modal'' presentation of linear logic was first introduced by Girard in his work on [[LU]] and then developed by a number of other people such as Plotkin, Wadler, Benton, and Barber. See the references for details. This presentation also generalizes naturally to [[dependent linear type theory]], with the nonlinear type theory being dependent, and the linear types depending on the nonlinear ones but nothing depending on linear types. In this context, the $!$-modality decomposes into ``context extension'' and a ``dependent sum''. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[exponential map]] \item [[multiplicative conjunction]] \item [[linear implication]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The semantics of ! as a comonad is discussed in: \begin{itemize}% \item [[R. A. G. Seely]], \emph{Linear logic, $\ast$-autonomous categories and cofree coalgebras}, \emph{Contemporary Mathematics} 92, 1989. ([[SeelyLinearLogic.pdf:file]], \href{http://www.math.mcgill.ca/rags/nets/llsac.ps.gz}{ps.gz}) \item [[Nick Benton]], Gavin Bierman, [[Valeria de Paiva]], [[Martin Hyland]], \emph{Linear lambda-Calculus and Categorical Models Revisited} (1992), \href{http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.6958}{citeseer} \item R. F. Blute , J. R. B. Cockett and R. A. G. Seely. \emph{! and ? -- Storage as tensorial strength} \href{https://doi.org/10.1017/S0960129500001055}{doi}, \href{http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.26.7317&rep=rep1&type=pdf}{pdf} \item [[Paul-André Melliès]], \emph{Categorical semantics of linear logic}, 2009. \href{https://www.irif.fr/~mellies/papers/panorama.pdf}{pdf} \item [[Martin Hyland]] and [[Andreas Schalk]], \emph{Glueing and orthogonality for models of linear logic}, \href{http://www.cs.man.ac.uk/~schalk/publ/gomll.pdf}{pdf} \end{itemize} The relation to Fock space is discussed in: \begin{itemize}% \item [[Richard Blute]], [[Prakash Panangaden]], [[R. A. G. Seely]], \emph{Fock Space: A Model of Linear Exponential Types} (1994) (\href{http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.6825}{web}, [[BPSLinear.pdf:file]]) \item [[Marcelo Fiore]], \emph{Differential Structure in Models of Multiplicative Biadditive Intuitionistic Linear Logic}, Lecture Notes in Computer Science Volume 4583, 2007, pp 163-177 (\href{http://www.cl.cam.ac.uk/~mpf23/papers/Types/diff.pdf}{pdf}) \item [[Jamie Vicary]], \emph{A categorical framework for the quantum harmonic oscillator}, International Journal of Theoretical Physics December 2008, Volume 47, Issue 12, pp 3408-3447 (\href{http://arxiv.org/abs/0706.0711}{arXiv:0706.0711}) (in the context of [[finite quantum mechanics in terms of dagger-compact categories]]) \end{itemize} The interpretation of $\Omega^\infty \Sigma^\infty_+$ as an exponential in the context of [[Goodwillie calculus]] is due to \begin{itemize}% \item [[Gregory Arone]], Marja Kankaanrinta, \emph{The Goodwillie tower of the identity is a logarithm}, 1995 (\href{http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.8306}{web}) \end{itemize} based on \begin{itemize}% \item [[Gregory Arone]], [[Mark Mahowald]], \emph{The Goodwillie tower of the identity functor and the unstable periodic homotopy of spheres}, 1998 (\href{http://hopf.math.purdue.edu/Arone-Mahowald/ArMahowald.pdf}{pdf}) \end{itemize} The modal approach to a term calculus for the $!$-modality can be found in: \begin{itemize}% \item [[Jean-Yves Girard]]. \emph{On the unity of logic.} Annals of Pure and Applied Logic, 59:201-217, 1993. \item G. Plotkin. \emph{Type theory and recursion.} In Proceedings of the Eigth Symposium of Logic in Computer Science, Montreal , page 374. IEEE Computer Society Press, 1993. \item N. Benton. \emph{A mixed linear and non-linear logic; proofs, terms and models.} In Proceedings of Computer Science Logic `94, number 933 in LNCS. Verlag, June 1995. \item Philip Wadler. \emph{A syntax for linear logic.} In Ninth International Coference on the Mathematical Foundations of Programming Semantics , volume 802 of LNCS . Springer Verlag, April 1993 \item Andrew Barber, \emph{Dual Intuitionistic Linear Logic}, Technical Report ECS-LFCS-96-347, University of Edinburgh, Edinburgh (1996), \href{http://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347/}{web} \end{itemize} [[!redirects of course]] [[!redirects !]] [[!redirects why not]] [[!redirects ?]] [[!redirects exponential conjunction]] [[!redirects exponential modality]] [[!redirects storage modality]] [[!redirects exponential modalities]] [[!redirects storage modalities]] \end{document}