\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{$G$-crossed braided fusion category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{monoidal_categories}{}\paragraph*{{Monoidal categories}}\label{monoidal_categories} \hypertarget{fusion_categories}{}\paragraph*{{Fusion categories}}\label{fusion_categories} [[!include monoidal categories - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{intuition}{Intuition}\dotfill \pageref*{intuition} \linebreak \noindent\hyperlink{name}{Name}\dotfill \pageref*{name} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{deequivariantisation}{(De-)Equivariantisation}\dotfill \pageref*{deequivariantisation} \linebreak \noindent\hyperlink{4d_extended_tqfts}{4d extended TQFTs}\dotfill \pageref*{4d_extended_tqfts} \linebreak \noindent\hyperlink{higher_categories}{Higher Categories}\dotfill \pageref*{higher_categories} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{intuition}{}\subsection*{{Intuition}}\label{intuition} A [[fusion category]] over a field $k$ can be seen as a [[categorification]] of a semisimple $k$-algebra. For example, the group algebra of a finite group $G$ would categorify to the fusion category of $G$-graded vector spaces. On the other hand, the notion of a [[2-group]] is an [[internalisation]] of the notion of a group. A [[strict 2-group]] (which is essentially the same as a [[crossed module]]) in particular has an underlying group. In this sense, a $G$-crossed braided fusion category can be seen as some kind of categorification of a crossed module $(G, H, \delta\colon H \to G, \alpha\colon G \to Aut(H))$, where the group $H$ is lifted to a fusion category, but $G$ is still a (finite) group. The boundary morphism $\delta$ is replaced by a $G$-grading, and the Peiffer rule ($G$-graded commutativity) is categorified to a \emph{crossed braiding} on $\mathcal{C}$. $G$-crossed braided fusion category should also be related to monoidal bicategories. \hypertarget{name}{}\subsection*{{Name}}\label{name} There are various names for this particular flavour of fusion category, involving permutations of the words ``braided'' and ``crossed'', or possibly trading ``braided'' for ``$G$-braided''. The latter choice has its justification in the fact that in general, it is \emph{not} a [[braided category]], but the braiding is in a sense twisted by the grading, just as the second group $H$ in a crossed module need not be abelian, but up to a group action. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A $G$-crossed braided fusion category consists of the following: \begin{itemize}% \item A finite group $G$, \item a fusion category $\mathcal{C}$ over a field $k$, \item a $G$-[[graded fusion category|grading]] on $\mathcal{C}$, \item a monoidal $G$-action $\rho$ on $\mathcal{C}$ (i.e. a monoidal functor $(\rho, \rho^2, \rho^0)\colon \underline{G} \to Aut_\otimes(\mathcal{C})$ from $G$ viewed as a discrete monoidal category to the category of tensor automorphisms of $\mathcal{C}$) such that $\rho(g_1)\mathcal{C}_{g_2} \subset \mathcal{C}_{g_1g_2g_1^{-1}}$, \item for each $g \in G$, a natural isomorphism $c_{g,X,Y}\colon X \otimes Y \to \rho(g)(Y) \otimes X$, where $X \in \mathcal{C}_g, Y \in \mathcal{C}$ \end{itemize} satisfying \begin{itemize}% \item a $G$-graded hexagon equation for $c$: \end{itemize} \begin{displaymath} \itexarray{ & & (X \otimes Y) \otimes Z \\ & \mathllap{{}^{\alpha_{X,Y,Z}}\swarrow} & & \mathrlap{\searrow^{c_{X,Y} \otimes 1_Z}} \\ X \otimes (Y \otimes Z) & & & & (\rho(g)(Y) \otimes X) \otimes Z \\ {}^{c_{X,Y \otimes Z}}\downarrow & & & & \downarrow^{\alpha_{\rho(g)(Y), X, Z}} \\ \rho(g)(Y \otimes Z) \otimes X & & & & \rho(g)(Y) \otimes (X \otimes Z) \\ {}^{\rho^2(g)_{Y, Z} \otimes 1_X}\downarrow & & & & \downarrow^{1_{\rho(g)(Y)} \otimes c_{X, Z}} \\ (\rho(g)(Y) \otimes \rho(g)(Z)) \otimes X & & \mathclap{\underset{\alpha_{\rho(g)(Y), \rho(g)(Z), X}}{\longrightarrow}} & & \rho(g)(Y) \otimes (\rho(g)(Z) \otimes X) } \end{displaymath} \begin{itemize}% \item compatibility of the crossed braiding and the group action. \end{itemize} TODO Commutative diagrams If $\mathcal{C}$ carries extra structure (e.g. a [[pivotal category|pivotal]] structure), the group action is typically required to preserve it. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item Every braided fusion category can be trivially graded, with the trivial action. \item Every crossed module $(G, H, \delta, \alpha)$ makes $H$-graded vector spaces into a $G$-crossed category. (Check/reference!) \end{itemize} \hypertarget{deequivariantisation}{}\subsection*{{(De-)Equivariantisation}}\label{deequivariantisation} See also [[equivariantisation]] for more details. Let $G$ be a finite group, and $\mathcal{C}$ a braided fusion category. A braided action of the (finite dimensional) representations $\operatorname{Rep}_G$ on $\mathcal{C}$ is the same as an inclusion of $\operatorname{Rep}_G$ in the symmetric centre $\mathcal{C}'$. By deequivariantisation, this is basically the same as a braided $G$-action on $\mathcal{C}_G$ (the category of internal $k[G]$-modules). This makes $\mathcal{C}_G$ into a $G$-crossed braided fusion category, but most examples don't arise like this, e.g. the grading obtained this way will always be trivial. The idea is then to generalise the full inclusion $\operatorname{Rep}_G \hookrightarrow \mathcal{C}' \hookrightarrow \mathcal{C}$ to a full inclusion $\operatorname{Rep}_G \hookrightarrow \mathcal{C}$ that need not factor over $\mathcal{C}'$. One can still deequivariantise the underlying fusion category of $\mathcal{C}$ with respect to the $\operatorname{Rep}_G$-action, but the procedure will not respect the braiding. Naturally, the result is not a braided fusion category, but a $G$-crossed braided fusion category. Vice versa, given a $G$-crossed braided fusion category $\mathcal{C}$, one can equivariantise it to a braided fusion category with a full inclusion of $\operatorname{Rep}_G$. When $c$ is the crossed braiding of $\mathcal{C}$, the braiding of two equivariant objects $(X \in \operatorname{ob} \mathcal{C}, u_g\colon \rho(g)(X) \to X)$ and $(Y \in \operatorname{ob} \mathcal{C}, v_g\colon \rho(g)(Y) \to Y)$ is given by $X \otimes Y \xrightarrow{c_{X,Y}} \rho(g)Y \otimes X \xrightarrow{v_g \otimes 1_X} Y \otimes X$. \hypertarget{4d_extended_tqfts}{}\subsection*{{4d extended TQFTs}}\label{4d_extended_tqfts} TODO - Cui's thesis \hypertarget{higher_categories}{}\subsection*{{Higher Categories}}\label{higher_categories} TODO Cui's 2-category \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Section 4.4 in \emph{On braided fusion categories I}, Drinfeld, Gelaki, Nikshych, Ostrik. \href{http://arxiv.org/abs/0906.0620}{ArXiv} \item Turaev \item M\"u{}ger \item Cui \end{itemize} [[!redirects $G$-crossed braided fusion categories]] [[!redirects Braided $G$-crossed fusion categories]] [[!redirects Braided G-crossed fusion categories]] [[!redirects G-crossed braided fusion categories]] [[!redirects G-crossed G-braided fusion categories]] [[!redirects $G$-crossed $G$-braided fusion categories]] [[!redirects Braided $G$-crossed fusion category]] [[!redirects Braided G-crossed fusion category]] [[!redirects G-crossed braided fusion category]] [[!redirects G-crossed G-braided fusion category]] [[!redirects $G$-crossed $G$-braided fusion category]] \end{document}