\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{(∞,1)-algebraic theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{Models}{Models}\dotfill \pageref*{Models} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{simplicial_1algebras}{Simplicial 1-algebras}\dotfill \pageref*{simplicial_1algebras} \linebreak \noindent\hyperlink{homotopy_algebras}{Homotopy $T$-algebras}\dotfill \pageref*{homotopy_algebras} \linebreak \noindent\hyperlink{simplicial_theories}{Simplicial theories}\dotfill \pageref*{simplicial_theories} \linebreak \noindent\hyperlink{structuresheaves}{Structure-$(\infty,1)$-sheaves}\dotfill \pageref*{structuresheaves} \linebreak \noindent\hyperlink{EInfty}{Symmetric monoidal $(\infty,1)$-Categories and $E_\infty$-algebras}\dotfill \pageref*{EInfty} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In as far as an [[algebraic theory]] or [[Lawvere theory]] is nothing but a [[small category]] with finite [[product]]s and an [[algebra]] for the theory a product-preserving [[functor]] to [[Set]], the notion has an evident generalization to [[higher category theory]] and in particular to [[(∞,1)-category]] theory. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} An \textbf{$(\infty,1)$-Lawvere theory} is (given by a syntactic $(\infty,1)$-category that is) an [[(∞,1)-category]] $C$ with finite [[limit in a quasi-category|(∞,1)-product]]s. An $(\infty,1)$-algebra for the theory is an [[(∞,1)-functor]] $C \to$ [[∞Grpd]] that preserves these products. The $(\infty,1)$-category of [[∞-algebras over an (∞,1)-algebraic theory]] is the full [[sub-(∞,1)-category]] \begin{displaymath} Alg_{(\infty,1)}(C) \hookrightarrow PSh_{(\infty,1)}(C^{op}) \end{displaymath} of the [[(∞,1)-category of (∞,1)-presheaves]] on $C^{op}$ on the product-preserving $(\infty,1)$-functors \end{defn} In a full $(\infty,1)$-category theoretic context this appears as [[Higher Topos Theory|HTT, def. 5.5.8.8]]. A definition in terms of [[simplicially enriched categories]] and the [[model structure on sSet-categories]] to present $(\infty,1)$-categories is in \href{(http://www.math.muni.cz/~rosicky/papers/infty6.pdf}{Ros}. The introduction of that article lists further and older occurences of this definition. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{prop} \label{}\hypertarget{}{} Let $C$ be an [[(∞,1)-category]] with finite [[limit in a quasi-category|product]]s. Then \begin{itemize}% \item $Alg_{(\infty,1)}(C)$ is an [[accessible (∞,1)-functor|accessible]] [[localization of an (∞,1)-category|localization]] of the [[(∞,1)-category of (∞,1)-presheaves]] $PSh_{(\infty,1)}(C^{op})$ (on the [[opposite (∞,1)-category|opposite]]). So in particular it is a [[locally presentable (∞,1)-category]]. \item $Alg_{(\inft)}$ is a [[compactly generated (∞,1)-category]]. \item The $(\infty,1)$-[[Yoneda embedding]] $j : C^{op} \to PSh_{(\infty,1)}(C^{op})$ factors through $Alg_{(\infty,1)}(C)$. \item The full subcategory $Alg_{(\infty,1)}(C) \hookrightarrow PSh_{(\infty,1)}(C)$ is stable under [[sifted colimit]]s. \end{itemize} \end{prop} This is [[Higher Topos Theory|HTT, prop. 5.5.8.10]]. \hypertarget{Models}{}\subsection*{{Models}}\label{Models} There are various [[model category]] [[presentable (∞,1)-category|presentations]] of $Alg_{(\infty,1)}(C) \hookrightarrow PSh_{(\infty,1)}(C^{op})$. Recall that the [[(∞,1)-category of (∞,1)-presheaves]] $PSh_{(\infty,1)}(C^{op})$ itself is modeled by the [[model structure on simplicial presheaves]] \begin{displaymath} PSh_{(\infty,1)}(C^{op}) \simeq [T, sSet]^\circ \,, \end{displaymath} where we regard $T$ as a [[Kan complex]]-[[enriched category]] and have on the right the [[sSet]]-[[enriched functor category]] with the projective or injective model structure, and $(-)^\circ$ denoting the full enriched subcategory on fibrant-cofibrant objects. This says in particular that every weak $(\infty,1)$-functor $f : T \to \infty \mathrm{Grp}$ is equivalent to a \emph{rectified} on $F : T \to KanCplx$. And $f \in PSh_{(\infty,1)}(C^{op})$ belongs to $Alg_{(\infty,1)}(C)$ if $F$ preserves finite products \emph{weakly} in that for $\{c_i \in C\}$ a finite collection of objects, the canonical natural morphism \begin{displaymath} F(c_1 \times \cdots, \c_n) \to F(c_1) \times \cdots \times F(c_n) \end{displaymath} is a [[homotopy equivalence]] of [[Kan complex]]es. If $T$ is an ordinary category with products, hence an ordinary [[Lawvere theory]], then such a functor is called a \textbf{[[homotopy T-algebra]]}. There is a model category structure on these (see there). We now look at model category structure on \emph{strictly} product preserving functors $C \to sSet$, which gives an equivalent model for $Alg_{(\infty,1)}(C)$. See [[model structure on simplicial T-algebras]]. \begin{prop} \label{}\hypertarget{}{} Let $C$ be a [[category]] with finite [[product]]s, and let $sTAlg \subset Func(C,sSet)$ be the [[full subcategory]] of the [[functor category]] from $C$ to [[sSet]] on those functors that preserve these products. Then $sAlg(C)$ carries the structure of a [[model category]] $sAlg(C)_{proj}$ where the weak equivalences and the fibrations are objectwise those in the standard [[model structure on simplicial sets]]. \end{prop} This is due to (\hyperlink{Quillen}{Quillen}). The inclusion $i : sAlg(C) \hookrightarrow sPSh(C^{op})_{proj}$ into the projective [[model structure on simplicial presheaves]] evidently preserves fibrations and acylclic fibrations and gives a [[Quillen adjunction]] \begin{displaymath} sAlg(C)_{proj} \stackrel{\leftarrow}{\underset{i}{\hookrightarrow}} sPSh(C^{op}) \,. \end{displaymath} \begin{prop} \label{}\hypertarget{}{} The total right [[derived functor]] \begin{displaymath} \mathbb{R}i : Ho(sAlg(C)_{proj}) \to Ho(sPSh(C^{op})_{proj}) \end{displaymath} is a [[full and faithful functor]] and an object $F \in sPSh(C^{op})$ belongs to the [[essential image]] of $\mathbb{R}i$ precisely if it preserves products up to [[weak homotopy equivalence]]. \end{prop} This is due to (\hyperlink{Bergner}{Bergner}). It follows that the natural $(\infty,1)$-functor \begin{displaymath} (sAlg(C)_{proj})^\circ \stackrel{}{\to} PSh_{(\infty,1)}(C^{op}) \end{displaymath} is an [[equivalence of quasi-categories|equivalence]]. A comprehensive statement of these facts is in [[Higher Topos Theory|HTT, section 5.5.9]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{simplicial_1algebras}{}\subsubsection*{{Simplicial 1-algebras}}\label{simplicial_1algebras} For $T$ (the [[syntactic category]] of) an ordinary [[algebraic theory]] (a [[Lawvere theory]]) let $T Alg$ be the category of its ordinary algebras, the ordinary product-preserving functors $T \to Set$. We may regard $T$ as an $(\infty,1)$-category and consider its $(\infty,1)$-algebras. By the above discussion, these are modeled by product-presering functors $T \to sSet$. But this are equivalently [[simplicial object]]s in $T$-algebras \begin{displaymath} [T, sSet]_\times \simeq T Alg^{\Delta^{op}} \,. \end{displaymath} There is a standard [[model structure on simplicial T-algebras]] and we find that simplicial $T$-1-algebras model $T$-$(\infty,1)$-algebras. \hypertarget{homotopy_algebras}{}\subsubsection*{{Homotopy $T$-algebras}}\label{homotopy_algebras} For $T$ an ordinary Lawvere theory, there is also a model category structure on ordinary functors $T \to sSet$ that preserve the products only up to weak equivalence. Such functors are called [[homotopy T-algebra]]s. This model structure is equivalent to the [[model structure on simplicial T-algebras]] (see [[homotopy T-algebra]] for details) but has the advantage that it is a left [[proper model category]]. \hypertarget{simplicial_theories}{}\subsubsection*{{Simplicial theories}}\label{simplicial_theories} There is a notion of \emph{simplicial algebraic theory} that captures some class of $(\infty,1)$-algebraic theories. For the moment see section 4 of (\hyperlink{Rezk}{Rezk}) \hypertarget{structuresheaves}{}\subsubsection*{{Structure-$(\infty,1)$-sheaves}}\label{structuresheaves} A pre[[geometry (for structured (∞,1)-toposes)]] is a (multi-sorted) $(\infty,1)$-algebraic theory. A \emph{structure $(\infty,1)$-sheaf} on an [[(∞,1)-topos]] $\mathcal{X}$ in the sense of [[structured (∞,1)-topos]]es is an $\infty$-algebra over this theory \begin{displaymath} \mathcal{O} : \mathcal{T} \to \mathcal{X} \end{displaymath} in the $(\infty,1)$-topos $\mathcal{X}$ -- a special one satisfying extra conditions that make it indeed behave like a sheaf of \emph{function algebras} . \hypertarget{EInfty}{}\subsubsection*{{Symmetric monoidal $(\infty,1)$-Categories and $E_\infty$-algebras}}\label{EInfty} There is a $(2,1)$-algebraic theory whose algebras in [[(∞,1)Cat]] are [[symmetric monoidal (∞,1)-categories]]. Hence monoids in these algebras are [[E-∞ algebra]]s (see [[monoid in a monoidal (∞,1)-category]]). This is in (\hyperlink{Cranch}{Cranch}). For more details see [[(2,1)-algebraic theory of E-infinity algebras]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[algebraic theory]] / [[Lawvere theory]] / [[essentially algebraic theory]] \begin{itemize}% \item [[2-Lawvere theory]] \item \textbf{algebraic $(\infty,1)$-theory} / [[essentially algebraic (∞,1)-theory]] \begin{itemize}% \item [[simplicial Lawvere theory]] \end{itemize} \end{itemize} \item [[monad]] / [[(∞,1)-monad]] \item [[operad]] / [[(∞,1)-operad]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The model structure presentation for the $(\infty,1)$-category of $(\infty,1)$-algebras goes back all the way to \begin{itemize}% \item [[Dan Quillen]], \emph{Homotopical Algebra} Lectures Notes in Mathematics 43, SpringerVerlag, Berlin, (1967) \end{itemize} A characterization of $(\infty,1)$-categories of $(\infty,1)$-algebras in terms of [[sifted colimit]]s is given in \begin{itemize}% \item J. Rosicky \emph{On homotopy varieties} (\href{http://www.math.muni.cz/~rosicky/papers/infty6.pdf}{pdf}) \end{itemize} using the incarnation of $(\infty,1)$-categories as [[simplicially enriched categories]]. An $(\infty,1)$-categorical perspective on these homotopy-algebraic theories is given in \begin{itemize}% \item [[Andre Joyal]], \emph{The theory of quasi-categories and its applications}, lectures at CRM Barcelona February 2008, draft \href{http://www.crm.cat/HigherCategories/hc2.pdf#page=44}{hc2.pdf}\_ \end{itemize} from page 44 on. A detailed account in the context of a general theory of [[(∞,1)-category of (∞,1)-presheaves]] is the context of section 5.5.8 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} . \end{itemize} The [[model category]] [[presentable (infinity,1)-category|presentations]] of $(\infty,1)$-algebras is studied in \begin{itemize}% \item [[Charles Rezk]], \emph{Every homotopy theory of simplicial algebras admits a proper model} (\href{http://arxiv.org/abs/math/0003065}{math/0003065}) , \end{itemize} where it is shown that every such model is [[Quillen equivalence|Quillen equivalent]] to a left [[proper model category]]. The article uses a monadic definition of $(\infty,1)$-algebras. A discussion of [[homotopy T-algebra]]s and their strictification is in \begin{itemize}% \item [[Bernard Badzioch]], \emph{Algebraic theories in homotopy theory} Annals of Mathematics, 155 (2002), 895-913 (\href{http://www.jstor.org/stable/3062135}{JSTOR}) \end{itemize} and for multi-sorted theories in \begin{itemize}% \item [[Julie Bergner]], \emph{Rigidification of algebras over multi-sorted theories} , Algebraic and Geometric Topoogy 7, 2007. \end{itemize} A discussion of [[E-∞ algebra]]-structures in terms of $(\infty,1)$-algebraic theories is in \begin{itemize}% \item [[James Cranch]], \emph{Algebraic Theories and $(\infty,1)$-Categories} (\href{http://arxiv.org/abs/1011.3243}{arXiv}) \end{itemize} See also \begin{itemize}% \item \href{http://mathoverflow.net/questions/118500/what-is-a-simplicial-commutative-ring-from-the-point-of-view-of-homotopy-theory}{MO discussion} \end{itemize} [[!redirects (infinity,1)-algebraic theory]] [[!redirects (infinity,1)-algebraic theories]] [[!redirects (∞,1)-algebraic theories]] [[!redirects algebraic (∞,1)-theory]] [[!redirects algebraic (∞,1)-theories]] \end{document}