\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{(1,1)-dimensional Euclidean field theories and K-theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{functorial_quantum_field_theory}{}\paragraph*{{Functorial quantum field theory}}\label{functorial_quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{supergeometry}{}\paragraph*{{Super-Geometry}}\label{supergeometry} [[!include supergeometry - contents]] This is a sub-entry of [[geometric models for elliptic cohomology]] and [[A Survey of Elliptic Cohomology]] See there for background and context. This entry here indicates how 1-dimensional [[FQFT]]s (the [[superparticle]]) may be related to [[topological K-theory|topological]] [[K-theory]]. \begin{quote}% \textbf{raw material}: this are notes taken more or less verbatim in a seminar -- needs polishing \end{quote} Previous: \begin{itemize}% \item [[Axiomatic field theories and their motivation from topology]]. \end{itemize} Next \begin{itemize}% \item [[(2,1)-dimensional Euclidean field theories and tmf]] \end{itemize} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{_efts}{$(1,1)d$ EFTs}\dotfill \pageref*{_efts} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{_efts}{}\subsection*{{$(1,1)d$ EFTs}}\label{_efts} recall the \textbf{commercial for supergeometry} with which we ended [[Axiomatic field theories and their motivation from topology|last time]]: the grading introduced by supergeometry makes it possible to have push-forward diagrams of the kind: \begin{displaymath} \itexarray{ (0|1)TFTs^n(X)/\simeq &\leftarrow& H^n_{dR}(X) \\ \downarrow && \downarrow \\ (0|1)TFT^0(X)/\simeq &\leftarrow& H^0_{dR}(pt) } \end{displaymath} \textbf{Example} of 1-EFT \begin{displaymath} \sigma_1(M^n) = E : 1-EB \to tV \end{displaymath} \begin{displaymath} pt \mapsto \Gamma M \end{displaymath} \begin{displaymath} (pt \stackrel{[0,t]}{\to}) \mapsto e^{- t \Delta} \end{displaymath} \textbf{Example} of $(1|1)-EFT$ associated to a [[Spin structure|spin manifold]], there is the [[spinor bundle]] \begin{displaymath} S = S^+ \oplus S^- \end{displaymath} a $\mathbb{Z}/2$-graded [[vector bundle]] and on this there is the [[Dirac operator]] \begin{displaymath} D : \Gamma(S) \to \Gamma(S) \end{displaymath} where $\Gamma(S) = \Gamma(S^+) \oplus \Gamma(S^-)$. So we can write \begin{displaymath} D = \left( \itexarray{ 0 & D_- \\ D+ & 0 } \right) \end{displaymath} \begin{displaymath} \sigma_{1|1}(M) : Bord_{1|1} \to TV \end{displaymath} \begin{displaymath} \mathbb{R}^{0|1} \mapsto E(\mathbb{R}^{0|1}) = \Gamma(S) \end{displaymath} there is an involution $invol : \mathbb{R}^{0|1} \to \mathbb{R}^{0|1}$. It maps to \begin{displaymath} invol \mapsto grading involution \end{displaymath} we have the following [[moduli space]] of super [[interval]]s (super 1d-bordisms) \begin{displaymath} \mathbb{R}^{1|1}_+ \simeq \{super intervals I_{t,\theta}\}/\sim \end{displaymath} and these are mapped by the EFT as \begin{displaymath} I_{t,\theta} \mapsto e^{-t D^2 + \theta D} \end{displaymath} (here we are implicitly working in the [[topos]] of [[sheaf|sheaves]] on the category of [[supermanifold]]s and these equations have to be interpreted in that topos-logic, mapping [[generalized element]]s to [[generalized element]]s). So we have for $E$ a $1|1$ EFT a \emph{reduced} non-susy field theory \begin{displaymath} \itexarray{ (1|1)EBord &\stackrel{E}{\to}& TV \\ \uparrow & \nearrow_{E_{red}} \\ EBord_1^{spin} } \end{displaymath} \textbf{Definition} $E \in (1|1)EFT$, the [[partition function]] $Z_E$ of $E$ is the function \begin{displaymath} Z_E : \mathbb{R}_+ \to \mathbb{C} \end{displaymath} \begin{displaymath} t \mapsto Z_{E_{red}}(t) = E_{red}(S^1_t) \end{displaymath} that sends a length to the value of the EFT on the circle of that circumferene. \textbf{Example} Consider from above the EFT \begin{displaymath} E = \sigma_{1|1}(M) \end{displaymath} look at its reduced part \begin{displaymath} z_E(t) = E_{red}(S^1_t) \end{displaymath} notice that by the above this assigns \begin{displaymath} [0,t] \stackrel{E_{red}}{\mapsto} e^{-t D^2} \end{displaymath} \begin{displaymath} S^1_t \mapsto str(e^{-t D^2}) = tr(e^{-t D^2})|_{even} - tr(e^{-t D^2})|_{odd} \end{displaymath} where on the right we have the [[super trace]]. This evaluates to \begin{displaymath} str(e^{-t D^2}) = \sum_{\lambda \in Spec(D^2)} e^{-t \lambda} sdim E_{\lambda} \end{displaymath} where the [[super dimension]] of the [[eigenspace]] $E_\lambda$ is \begin{displaymath} dim E^+_\lambda - dim E^-_\lambda \end{displaymath} and this vanishes for $\lambda \neq 0$ since there $D : E_\lambda^+ \stackrel{\simeq}{\to} E_\lambda^-$ is an [[isomorphism]]. So further in the computation we have \begin{displaymath} \cdots = dim ker D_+ - dim coker D_+ = \hat A(M) \end{displaymath} where the last step is the [[Atiyah-Singer index theorem]]. So \textbf{due to supersymmetry} , the [[partition function]] has two very special properties: \begin{itemize}% \item it is constant -- in that it does not depend on $t$, \item it takes integer values $\in \mathbb{N} \subset \mathbb{R}$. \end{itemize} \textbf{recall} from $V \to X$ a [[vector bundle]] [[connection on a bundle|with connection]] $\nabla$ we get a 1d EFT \begin{displaymath} E_{(V,\nabla)} \in 1d EFT(X) \end{displaymath} given by the assignment \begin{displaymath} E_{(V,\nabla)} : 1s EB(X) \to TV \end{displaymath} \begin{displaymath} (x : pt \to X) \mapsto V_x = fiber of V over x \end{displaymath} a morphism is an [[interval]] $[0,t]$ of length $t$ equipped with a map $\gamma : [0,t] \to X$, this is sent to the [[parallel transport]] associated with the [[connection on a bundle]] \begin{displaymath} \gamma \mapsto (V_{\gamma_x} \to V_{\gamma_y}) \end{displaymath} Now refine this example to super-dimension $(1|1)$: \textbf{example} of a $(1|1)$-EFT over $X$ consider \begin{displaymath} EBord_{(1|1)} \to EBord_{1}(X) \stackrel{E_{(V,\nabla)}}{\to} TV \end{displaymath} given by the assignment \begin{displaymath} (\Sigma^{(1|1)} \to X)( \mapsto (\Sigma^{(1|1)}_{red} \to X) \mapsto parallel transport as before \end{displaymath} so we just forget the super-part and consider the same [[parallel transport]] as before. now to [[K-theory]]: $KO^0(X) =$ [[Grothendieck group]] of real [[vector bundle]]s over $X$ \begin{displaymath} KO^{-n}(pt) = \left\{ \itexarray{ \mathbb{Z} & n = 0 mod 4 \\ \mathbb{Z}_2 & n = 1,2 mod 8 \\ 0 & otherwise } \right. \end{displaymath} there is a [[Bott element]] $\beta \in KO^{-8}(pt)$ such that \begin{displaymath} KO^*(pt) \stackrel{\simeq_{\mathbb{Q}}}{\to} \mathbb{Z}[u,u^{-1}] \end{displaymath} \begin{displaymath} \beta \mapsto u^2 \end{displaymath} now the \textbf{push-forward in [[topological K-theory]]} \begin{displaymath} p : X^n \to pt \end{displaymath} for $X$ a closed [[spin structure]] manifold then there exists an embedding $X \hookrightarrow S^{n+m}$. Let $\nu$ be the [[normal bundle]] to this embedding. then we define \begin{displaymath} \int_X : KO^k(X) \to KO^{k-n}(pt) \end{displaymath} as follows: let $D(\nu)$ be the [[disk bundle]] and $S(\nu)$ be the [[sphere bundle]] of $\nu$. Then the [[Thom bundle]] is \begin{displaymath} T(\nu) := D(\nu)/S(\nu) \end{displaymath} we get a map \begin{displaymath} S^{n+m} \stackrel{C}{\to} T(\nu) := D(\nu)/S(\nu) \end{displaymath} involving the [[Thom isomorphism]] \begin{displaymath} C(X) = \left\{ \itexarray{ X & if x \in D(\nu) \\ * & otherwise } \right. \end{displaymath} then we set \begin{displaymath} \itexarray{ KO^k(X) && \stackrel{\int_X}{\to}&& KO^{k-n}(pt) \\ & {}_{Thom iso}\searrow &&& \downarrow^{\simeq}_{suspension} \\ && \tilde KO^{k+m}(T(\nu)) &\stackrel{C^*}{\to}& } \end{displaymath} \vspace{.5em} \hrule \vspace{.5em} now start with $X^n$ again a [[spin structure|spin]] [[manifold]] then \textbf{theorem} (Stolz-Teichner): we have the horizontal isomorphism in the following diagram: \begin{displaymath} \itexarray{ && [E_{(V,\nabla)}]&& \stackrel{}{\leftarrow} && [V^+ - V^-] \\ 1 \in &&(1|1)EFT^0(X)/_{conc} &&\stackrel{\simeq}{\to}&& KO^0(X) && \ni 1 \\ \downarrow &&\downarrow^{quantization} &&&& \downarrow^{\int_X} && \downarrow \\ \sigma_{(1|1)}(X) &&EFT^{-n}(pt)/_{conc} &&\stackrel{\simeq}{\to}&& KO^{-n} && \alpha(X) \\ &\searrow&&{}_{partition func}\searrow&& \swarrow_{\simeq} && \swarrow_{Atiyah's \alpha invariant} \\ &&&& (\mathbb{Z}[u,u^{-1}])^{-n} \\ &&&& index D = \hat A(X) u^{n/4} } \end{displaymath} \textbf{question} if we don't divide out [[concordance]], do we get [[differential K-theory]] on the right? \textbf{answer} presumeably, but not worked out yet \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[supersymmetric quantum mechanics]] \item [[Euclidean quantum field theory]] \item [[spectral triple]] \item [[spectral action]] \item [[higher category theory and physics]]: \item \textbf{(1,1)-dimensional Euclidean field theories and K-theory} \item [[(2,1)-dimensional Euclidean field theories and tmf]] \item [[2-spectral triple]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} \begin{itemize}% \item [[Stephan Stolz]], [[Peter Teichner]], \emph{[[What is an elliptic object?]]} in \emph{Topology, geometry and quantum field theory} , London Math. Soc. LNS 308, Cambridge Univ. Press (2004), 247-343. (\href{http://web.me.com/teichner/Math/Reading_files/Elliptic-Objects.pdf}{pdf}) \item Pokman Cheung, \emph{Supersymmetric field theories and cohomology} (\href{http://arxiv.org/abs/0811.2267}{arXiv:0811.2267}) \item [[Stefan Stolz]] (notes by Arlo Caine), \emph{Supersymmetric Euclidean field theories and generalized cohomology} Lecture notes (2009) (\href{http://www.cpp.edu/~jacaine/pdf/Lectures_complete.pdf}{pdf}) \item [[Stefan Stolz]], [[Peter Teichner]], \emph{Supersymmetric Euclidean field theories and generalized cohomology} , in [[Hisham Sati]], [[Urs Schreiber]] (eds.), \emph{[[schreiber:Mathematical Foundations of Quantum Field and Perturbative String Theory]]} Proceedings of Symposia in Pure Mathematics, AMS (2011) \end{itemize} \end{document}