\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{(2,1)-dimensional Euclidean field theories and tmf} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{functorial_quantum_field_theory}{}\paragraph*{{Functorial quantum field theory}}\label{functorial_quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{supergeometry}{}\paragraph*{{Super-Geometry}}\label{supergeometry} [[!include supergeometry - contents]] This is a sub-entry of [[geometric models for elliptic cohomology]] and [[A Survey of Elliptic Cohomology]] See there for background and context. This entry here indicates how 2-dimensional [[FQFT]]s may be related to [[tmf]]. \begin{quote}% \textbf{raw material}: this are notes taken more or less verbatim in a seminar -- needs polishing \end{quote} Previous: \begin{itemize}% \item [[Axiomatic field theories and their motivation from topology]]. \item [[(1,1)-dimensional Euclidean field theories and K-theory]] \end{itemize} recall the big diagram from the end of the [[(1,1)-dimensional Euclidean field theories and K-theory|previous entry]]. The \textbf{goal} now is to replace everywhere [[topological K-theory]] by [[tmf]]. previously we had assumed that $X$ has [[spin structure]]. Now we assume [[String structure]]. So we are looking for a diagram of the form \begin{displaymath} \itexarray{ 1 && (2|1)EFT^0(X)/\sim && \stackrel{\simeq conjectural}{\leftarrow}&& tmf^0(X) && \ni 1 \\ \downarrow && \downarrow^{quantization} &&&& \downarrow^{\int_X} && \downarrow \\ \sigma_{(2|1)(X)}&& (2|1)EFT^{-n}(X)/\sim &&\stackrel{\simeq conjectural }{\leftarrow}&& tmf^{-n}(pt) && \\ &\searrow & \searrow &&& \swarrow& \swarrow \\ &&&& mf^{-n} \\ &&&& index^{S^1}(D_{L X}) = W(X) } \end{displaymath} the vertical maps here are due to various theorems by various people -- except for the ``physical quantization'' on the left, that is used in physics but hasn't been formalized the \textbf{horizontal maps are the conjecture we are after} in the Stolz-Teichner program: The top horizontal map will involve making the notion of $(2|1)$EFT \emph{local} by refining it to an \emph{extended} [[FQFT]]s. This will not be considered here. we will explain the following items \begin{itemize}% \item the [[ring]] $mf^\bullet$ of [[integral modular form]]s \begin{displaymath} mf^\bullet \simeq \mathbb{Z}[c_4, c_6, \Delta, \Delta^{-1}]/(c_4^{3}- c_6^{2} - 1728 \Delta) \end{displaymath} one calls $w = -\frac{n}{2}$ the \emph{weight} . We have degree of $\Delta$ is $deg(\Delta) = -24$, hence $w(\Delta) = 12$. \item $W(X)$ is the [[Witten genus]] \begin{displaymath} W(X) = \sum_{k \in \mathbb{Z}} a_k \cdot q^k \,, a_k \in \mathbb{Z} \end{displaymath} where $a_k = index(D_X \otimes E_k)$ where $E_k$ is some explicit vector bundle over $X$. \end{itemize} \hypertarget{modular_forms}{}\subsection*{{modular forms}}\label{modular_forms} \textbf{definition} An \textbf{(integral) [[modular form]]} of weight $w$ is a [[holomorphic function]] on the [[upper half plane]] \begin{displaymath} f : (\mathbb{R}^2)_+ \hookrightarrow \mathbb{C} \end{displaymath} (complex numbers with strictly positive imaginary part) such that \begin{enumerate}% \item if $A = \left( \itexarray{a & b \\ c& d}\right) \in SL_2(\mathbb{Z})$ acting by $A : \tau \mapsto = \frac{a \tau + b }{c \tau + d}$ we have \begin{displaymath} f(A(\tau)) = (c \tau + d)^w f(\tau) \end{displaymath} \textbf{note} take $A = \left( \itexarray{1 & 1 \\ 0& 1}\right)$ then we get that $f(\tau + 1) = f(\tau)$ \item $f$ has at worst a pole at $\{0\}$ (for \emph{weak} modular forms this condition is relaxed) it follows that $f = f(q)$ with $q = e^{2 \pi i \tau}$ is a meromorphic funtion on the open disk. \item \textbf{integrality} $\tilde f(q) = \sum_{k = -N}^\infty a_k \cdot q^k$ then $a_k \in \mathbb{Z}$ \end{enumerate} by this definition, modular forms are not really functions on the upper half plane, but functions on a [[moduli space]] of [[torus|tori]]. See the following definition: if the weight vanishes, we say that modular form is a \textbf{[[modular function]]} . \textbf{definition (2|1)-dim [[partition function]]} Let $E$ be an EFT \begin{displaymath} (2|1)EFT^0 \stackrel{S}{\to} 2 EFT \ne E \end{displaymath} \begin{displaymath} E \mapsto E_{red} \end{displaymath} then the [[partition function]] is the map $Z_E : \mathbb{C} \to \mathbb{R}$ \begin{displaymath} Z_E : \tau \mapsto E_{red}(T_\tau) \end{displaymath} where \begin{displaymath} T_\tau := \mathbb{C}/{\mathbb{Z} \times \mathbb{Z} \cdot \tau} \end{displaymath} is thee standard torus of modulus $\tau$. then the central \textbf{theorem} that we are after here is \textbf{therorem (Stolz-Teichner)} (after a suggestion by [[Edward Witten]]) There is a precise definition of $(2|1)$-EFTs $E$ such that the [[partition function]] $Z_E$ is an integral [[modular function]] (so this is really four theorems: the function is holomorphic, integral, etc.) moreover, every [[integral modular function]] arises in this way. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} A concrete relation between [[2d SCFT]] and [[tmf]] is the lift of the [[Witten genus]] to the [[string orientation of tmf]]. See there fore more. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Stephan Stolz]], [[Peter Teichner]], \emph{[[What is an elliptic object?]]} in \emph{Topology, geometry and quantum field theory} , London Math. Soc. LNS 308, Cambridge Univ. Press (2004), 247-343. (\href{http://web.me.com/teichner/Math/Reading_files/Elliptic-Objects.pdf}{pdf}) \item Pokman Cheung, \emph{Supersymmetric field theories and cohomology} (\href{http://arxiv.org/abs/0811.2267}{arXiv:0811.2267}) \item [[Stefan Stolz]], [[Peter Teichner]], \emph{Supersymmetric Euclidean field theories and generalized cohomology} , in [[Hisham Sati]], [[Urs Schreiber]] (eds.), \emph{[[schreiber:Mathematical Foundations of Quantum Field and Perturbative String Theory]]} \end{itemize} A hint supporting the conjectured relation of [[2d SCFT]] to [[tmf]], vaguely in line with the lift of the [[Witten genus]] to the [[string orientation of tmf]]: \begin{itemize}% \item [[Davide Gaiotto]], [[Theo Johnson-Freyd]], \emph{Holomorphic SCFTs with small index} (\href{https://arxiv.org/abs/1811.00589}{arXiv:1811.00589}) \end{itemize} \end{document}