\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{(2,1)-dimensional Euclidean field theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{quantum_field_theory}{}\paragraph*{{Quantum field theory}}\label{quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{supergeometry}{}\paragraph*{{Supergeometry}}\label{supergeometry} [[!include supergeometry - contents]] This is a sub-entry of [[geometric models for elliptic cohomology]] and [[A Survey of Elliptic Cohomology]] See there for background and context. This entry here is about the definition of $(2|1)$-dimensional [[super-cobordism]] categories where cobordisms are [[Euclidean supermanifold]]s, and about $the (2|1)$-dimensional [[FQFT]]s given by functors on these. Previous: \begin{itemize}% \item [[Axiomatic field theories and their motivation from topology]] \item [[(1,1)-dimensional Euclidean field theories and K-theory]] \item [[(2,1)-dimensional Euclidean field theories and tmf]] \item [[bordism categories following Stolz-Teichner]] \end{itemize} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{contents}{Contents}\dotfill \pageref*{contents} \linebreak \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{details}{Details}\dotfill \pageref*{details} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{explicit_description_of_}{explicit description of $E Bord_{1}^{fam}$}\dotfill \pageref*{explicit_description_of_} \linebreak \noindent\hyperlink{explicit_description_of__2}{explicit description of $E Bord_{2}$}\dotfill \pageref*{explicit_description_of__2} \linebreak \noindent\hyperlink{explicit_description_of__3}{explicit description of $E Bord_{2}^{fam}$}\dotfill \pageref*{explicit_description_of__3} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\section*{{Idea}}\label{idea} Previously we had defined smooth categories of [[Riemannian cobordism]]s. Now we pass from [[Riemannian manifold]]s to [[Euclidean supermanifold]]s and define the corresponding smooth [[cobordism category]]. Then we define $(d|\delta)$-dimensional Euclidean field theories to be smooth representations of these categories. As described at [[(2,1)-dimensional Euclidean field theories and tmf]], the idea is that $(2|1)$-dimensional Euclidean field theories are a geometric model for [[tmf]] [[cohomology theory]]. While there is no complete proof of this so far, in the next and final session \begin{itemize}% \item [[modular forms from partition functions]] \end{itemize} it will be shows that the claim is true at least for the [[cohomology ring]] over the point: the [[partition function]] of a $(2|1)$-dimensional EFT is a modular form. Hence $(2|1)$-dimensional EFTs do yield the correct [[cohomology ring]] of [[tmf]] over the point. \hypertarget{details}{}\section*{{Details}}\label{details} Let [[SDiff]] be the [[category]] of [[supermanifold]]s. We will define a [[stack]]/[[fibered category]] on $SDiff$ called $E Bord_{2|1}$ whose morphisms are smooth families of (2|1)-dimensional [[super-cobordism]]s, and a [[stack]]/[[fibered category]] $sTV^{fam}$ of topological super vector bundles. So recall \begin{itemize}% \item [[supergeometry - contents|supergeometry]]. \end{itemize} \textbf{question}: What is the right notion of Riemannian or Euclidean structure on [[super-cobordism]]s? \textbf{strategy}: From the [[path integral]] perspective we need some structure on $\Sigma$ such that the ``space'' of maps $Maps(\Sigma,X)$ naturally carries some measure that allows to perform a [[path integral]]. This perspective suggests certain generalizations of the notion of [[Riemannian manifold]] to [[supermanifold]]s which may be a little different than what one might have thought of naively. We want to define [[Euclidean supermanifold]]s as a generalization of [[Riemannian manifold]] with \emph{flat} Riemannian metric. notice that there is a canonical bijection between \begin{itemize}% \item flat [[Riemannian metric]]s on a $d$-dimensional [[manifold]] $X$ \item a maximal [[atlas]] on $X$ consisting of charts such that all transition functions belong the the \textbf{Euclidean group} or \textbf{Galileo group} \begin{displaymath} Eucl(\mathbb{R}^d) := \mathbb{R}^d \rtimes O(\mathbb{R}^d) \end{displaymath} (rigid translations and rotations) \end{itemize} In analogy to that we define: Similarly a \textbf{Euclidean structure} on a $(d|\delta)$-dimensional [[supermanifold]] is defined using the Euclidean [[super Lie group]] given by the [[semidirect product]] \begin{displaymath} Eucl(\mathbb{R}^{d|\delta}) := \mathbb{R}^{d|\delta} \rtimes Spin(\mathbb{R}^d) \end{displaymath} where the [[Spin]] group acts on the translations in $\mathbb{R}^{d|\delta}$ in a way to be specified. first recall the notion of \begin{itemize}% \item [[complex supermanifold]] \end{itemize} \textbf{goal} replace the standard Euclidean group $(\mathbb{R}^d, Eucl(\mathbb{R}^d))$ by the [[super Euclidean group]] $(X,G)$ where $X$ is a suitable [[supermanifold]] and $G$ a suitable [[super Lie group]]. This leads to the notion of \begin{itemize}% \item [[Euclidean supermanifold]]. \end{itemize} The morphisms of the category $E Bord_{(2|1)}$ will be [[cobordism]]s that are [[Euclidean supermanifold]]s. \textbf{goal} define the [[fibered category]] \begin{displaymath} \itexarray{ E Bord_{d|\delta}^{sfam} \\ \downarrow \\ cSDiff } \end{displaymath} where $cSDiff$ is the category of [[complex supermanifold]]s. The objects of this fibered category are \begin{displaymath} \itexarray{ Y^{\pm} &\to& Y &\leftarrow& Y^c \\ & \searrow & \downarrow & \swarrow \\ && S } \end{displaymath} where $Y \to S$ is a family of [[Euclidean supermanifold]]s of dimension $(d|\delta)$. For the non-super, non-family version of \textbf{Euclidean bordism} we require that the core $Y^c$ is totally geodesic in $Y$. now for the superversion we require that there exist charts (in the open atlas) of $Y \to S$ covering all of $Y^c$ such that \begin{displaymath} \itexarray{ && S \\ & \nearrow && \nwarrow \\ Y \supset_{open} U &&\stackrel{\phi}{\to}&& V \subset S \times \mathbb{R}^{d|\delta}_{cs} \\ \downarrow^{\supset} &&&& \downarrow^{\supset} \\ Y^c \supset U \cap Y^c &&\stackrel{\simeq}{\to}&& V \cap S \times \mathbb{R}^{d-1|\delta} \subset S \times \mathbb{R}^{d-1|\delta}_{cs} } \end{displaymath} next, a \textbf{Euclidean superbordism} from $Y_0 \to S$ to $Y_1 \to S$ is a diagram \begin{displaymath} \itexarray{ Y_1 &\stackrel{i_1}{\to}& \Sigma &\stackrel{i_0}{\leftarrow}& Y_1 \\ & \searrow & \downarrow & \swarrow \\ && S } \end{displaymath} where $i_0, i_1$ are morphisms (of families of $(X,G)$-spaces) satisfying the (+)-condition and the (c)-condition described at [[bordism categories following Stolz-Teichner]]. Now a morphism in $E Bord^{sfam}_{d|\delta}$ from $Y_0 \to S_0$ to $Y_1 \to S_1$ is a bordism fitting into a diagram \begin{displaymath} \itexarray{ \Sigma &\stackrel{i_1}{\leftarrow}& f^* Y_1 &\to& Y_1 \\ \uparrow^{i_0} &\searrow& \downarrow && \downarrow \\ Y_1 &\to & S_0 &\stackrel{f}{\to}& S1 } \end{displaymath} and we identify bordisms $\Sigma, \Sigma'$ if they are isometric -- namely isomorphic in the category of [[Euclidean supermanifold]]s -- ``rel boundary''. \textbf{definition} A \textbf{$(d|\delta)$-dimensional Euclidean field theory} is a [[symmetric monoidal functor]] \begin{displaymath} E \in Fun_{csDiff}^\otimes(E Bord_{(d|\delta)}^{sfam}, TV^{sfam}) \end{displaymath} of [[symmetric monoidal category|symmetric monoidal]] [[fibered category|fibered cateories]] (i. [[symmetric monoidal functor]] as well as [[cartesian functor]] ) over the category $cSDiff$ of [[complex supermanifold]]s. \textbf{Definition} (roughly) $TV^{sfam}$ is the category of families of topological vector spaces parameterized by [[complex supermanifold]]s. Recall that the ordinary category $TV$ is the category of complete [[Hausdorff space|Hausdorff]], locally convex [[topological vector space]]. define the [[projective tensor product]] of two such $V, W \in TV$. This is a certain completion of the algebraic tensor product $V \otimes_{alg} W$ with respect to the projective topology on $V \otimes_{alg} W$. This will be the coarsest [[topology]] (the one with the least open sets) making the following maps $f'$ \begin{displaymath} \itexarray{ V \otimes_{alg} W &\to& Z \\ & \nearrow_{f'} \\ V \times W } \end{displaymath} continuous. \textbf{Remark} \begin{displaymath} \itexarray{ C^\infty(M \times N) &\leftarrow& C^\infty(M) \otimes_{alg} C^\infty(N) \\ & {}_{\simeq}\nwarrow & \downarrow^{\subset} \\ && C^\infty(M) \otimes C^\infty(N) } \end{displaymath} \textbf{Definition} the objects of $TV^{sfam}$ are pairs $(S,V)$ for $S$ a [[supermanifold]] and $V$ is a [[sheaf]] of locally complex $\mathbb{Z}_2$-graded [[topological vector space]] with the structure of a sheaf of modules of the [[structure sheaf]] $O_S$. \textbf{goal} define the [[partition function]] of of a $(2|1)$-dimensional Euclidean field theory. \textbf{definition} Let $E$ be an EFT as above. We may think of $\mathbb{R}_+ \times h$ (positive axis times upper half plane) as moduli space of Euclidean tori, where for $(\ell, \tau) \in \mathbb{R}_+ \times h$ we get a torus (regarded as a [[cobordism]]) denoted $T_{\ell,\tau}$. This is the torus given by the lattice spanned by $(1,0)$ and $\ell Re(\tau) + Im(\tau)$ in the upper half plane. Then for the ordinary EFT we would define \begin{displaymath} Z_E : \mathbb{R}_+ \times h \to \mathbb {C} \end{displaymath} \begin{displaymath} (\ell,\tau) \mapsto E(T_{\ell,\tau}) \end{displaymath} For the superversion we put \begin{displaymath} Z_{E} := Z_{E_{red}} \end{displaymath} where \begin{displaymath} \itexarray{ && E Bord_{2|1}^{sfam} \\ & {}^{\rho}\nearrow && \searrow^{E} \\ E Bord_{2, Spin}^{fam} &\stackrel{E_{red}}{\to}& TV^{fam} & \hookrightarrow & TV^{sfam} } \end{displaymath} \hypertarget{examples}{}\section*{{Examples}}\label{examples} \hypertarget{explicit_description_of_}{}\subsection*{{explicit description of $E Bord_{1}^{fam}$}}\label{explicit_description_of_} See [[bordism categories following Stolz-Teichner]]. The category $E Bord_1^{fam}$ is generated from \begin{itemize}% \item the \emph{family of right elbows\_} \begin{displaymath} \itexarray{ 1-E Bord_{\mathbb{R}_+}^{fam}(\emptyset, pt \coprod pt) & \ni& R & := \mathbb{R}_+ \times \mathbb{R} \\ && \downarrow \\ && S := \mathbb{R}_+ } \end{displaymath} \item the point-family of the left elbox \begin{displaymath} \itexarray{ L_0 \\ \downarrow \\ S := pt } \end{displaymath} \item the family of intervals in $E Bord^{fam}_{\mathbb{R}^+}(pt,pt)$ \begin{displaymath} \itexarray{ I \\ \downarrow \\ \mathbb{R}_{\geq 0} } \end{displaymath} \end{itemize} Because: $E \in Fun^{\otimes}_{Diff}(E Bord^{fam}, TV^{fam})$ \$ is determined by \begin{displaymath} E(pt) =: V \in TV \end{displaymath} \begin{displaymath} E(L_0) =: \lambda : V \otimes V \to \mathbb{R} \end{displaymath} \begin{displaymath} E(R) =: \rho \in TV_{\mathbb{R}^+}(\mathbb{R}, V \otimes V) \simeq C^\infty(\mathbb{R}_+, V \otimes V) \end{displaymath} \begin{displaymath} E(I) =: e^{-t H} \in C^\infty(\mathbb{R}_{\geq}, End(V)) \end{displaymath} forms a \emph{smooth} semigroup under composition generated by \begin{displaymath} H \in End(V) \end{displaymath} (the [[Hamiltonian operator]]) \begin{displaymath} \itexarray{ V \otimes V &&\stackrel{\lambda}{\hookrightarrow}&& End(V) \\ & {}_{\rho}\nwarrow && \nearrow_{e^{- t H}} \\ && \mathbb{R}_+ } \end{displaymath} so due to smoothness the data collapses to the infinitesimal data \begin{displaymath} (V, \lambda, H) \end{displaymath} \textbf{example -- ordinary quantum mechanics} Let $M$ be a [[Riemannian manifold]]. Then set \begin{itemize}% \item $H:= \Delta$ the corresponding [[Laplace operator]]; \item $V := C^\infty(M) \subset L^2(M)$; \item $\lambda$ is the restriction of the $L^2(M)$ inner product to $V$ \end{itemize} where $e^{-t H}$ is ``trace class'' in the non-standard sense described above in that it makes the above diagram commute. So everything as known from standard [[quantum mechanics]] textbooks, except that we don't use the full [[Hilbert space]] of states, but just the [[Frechet space]] of smooth functions. \hypertarget{explicit_description_of__2}{}\subsection*{{explicit description of $E Bord_{2}$}}\label{explicit_description_of__2} The category $E Bord_{2}_{oriented}^{fam}$ has the following generators: objects are generated from \begin{itemize}% \item the \textbf{circle} $K_\ell := \mathbb{R}^2/\mathbb{Z}\cdot \ell$ of length $\ell \gt 0$ (with collars!! that's why it looks like a cylinder of circumference $\ell$) notice that we may think of $\ell$ as parameteriing translation by $\ell$ in $\mathbb{R}^2 \rtimes SO(2) = Eucl_{or}(\mathbb{R}^2)$ and the circle with $(+)$/$(-)$-collars reversed \end{itemize} morphisms are generated from \begin{itemize}% \item \textbf{cylinders} $C_{\ell,\tau}$ which as a manifold is $\simeq \mathbb{R}^2/\mathbb{Z}\cdot \ell$ where $\tau$ parameterizes the embedding of the outgoing circle: the incoming circle is embedded in the canonical way (the identity map on the cylinder, really), while the outgoing circle is embedded by translating the cylinder by $\ell \cdot Re(\tau)$ upwards and rotated by $\ell \cdots Im(\tau)$. \item \textbf{right elbows} which are the same as the cylinder, except that now the second circle is embedded after reflection so that it becomes an ingoing circle. \item the \textbf{thin left elbow} $L_\ell$, similar to the above, with arbitrary $\ell$ but $\tau = 0$ \item the \textbf{torus} $T_\tau$ obtained from the cylinder by gluing incoming and outgoing \end{itemize} \textbf{notice} the \textbf{pair of pants} is not a morphism in the category at all! since, recall, we require all bordisms to be \emph{flat} and all boundaries to be \emph{geodesics} . There is no way to put such a flat metric on the trinion. satisfying the relations \begin{displaymath} L_\ell \circ R_{\ell, \tau} = T_{\ell, \tau} \end{displaymath} as for the non-family version, but now also with the new relations \begin{displaymath} T_{\ell', \tau'} = T_{\ell, \tau} \end{displaymath} whenever $\ell' = \ell \cdot|c \tau + d|$ and $\tau' = \frac{a \tau + b }{c \tau + d}$ for $\left(\itexarray{a & b \\ c & d }\right) \in SL_2(\mathbb{Z})$. Notice that $SL_2(\mathbb{Z})$ is generated by \begin{itemize}% \item translation $(\ell, \tau) \mapsto (\ell, \tau + 1)$ \item S-matrix $(\ell, \tau) \mapsto (\ell \cdot |\tau|, - \frac{1}{\tau})$ \end{itemize} and now there is \textbf{one more relation} \begin{displaymath} T_{\ell, \tau} = T_{\ell |\tau|, - \frac{1}{\tau}} \end{displaymath} as usual write $q := e^{2 \pi i \tau}$ which is on the pointed unit disk since $\tau$ is half plane since $\tau$ \hypertarget{explicit_description_of__3}{}\subsection*{{explicit description of $E Bord_{2}^{fam}$}}\label{explicit_description_of__3} thwe category $E Bord_{2, oriented}^{fam}$ is generated from objects: \begin{itemize}% \item $\itexarray{K \\ \downarrow \\ S = \mathbb{R}_+}$ \item morphisms \begin{displaymath} \itexarray{ L \\ \downarrow \\ \mathbb{R}_+ } \end{displaymath} \begin{displaymath} \itexarray{ R \\ \downarrow \\ \mathbb{R}_+ \times h/\mathbb{Z} } \end{displaymath} \begin{displaymath} \itexarray{ C \\ \downarrow \\ \mathbb{R}_+ \times (h \cup \mathbb{R})/\mathbb{Z} } \end{displaymath} \end{itemize} subject to the relations \ldots{} as before (homework 3, problem 4).. and the furhter one: for \begin{displaymath} \itexarray{ T && \alpha^* T \\ \downarrow && \downarrow \\ \mathbb{R}_+ \times h &\stackrel{\alpha}{\leftarrow}& \mathbb{R}_+ \times h \\ \\ (\ell\cdot |\tau|, -\frac{1}{\tau}) &\stackrel{}{\lt\leftarrow}& (\ell, \tau) } \end{displaymath} the relation is \begin{displaymath} \alpha^* T = T \,. \end{displaymath} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Stefan Stolz]] (notes by Arlo Caine), \emph{Supersymmetric Euclidean field theories and generalized cohomology} Lecture notes (2009) (\href{http://www.nd.edu/~jcaine1/pdf/Lectures_complete.pdf}{pdf}) \end{itemize} [[!redirects (2,1)-dimensional Euclidean field theories]] \end{document}