\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{(geometric surjection, embedding) factorization system} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{as_idempotent_approximation}{As idempotent approximation}\dotfill \pageref*{as_idempotent_approximation} \linebreak \noindent\hyperlink{a_logical_description}{A logical description}\dotfill \pageref*{a_logical_description} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Every [[geometric morphism]] between [[toposes]] factors into a [[geometric surjection]] followed by a [[geometric embedding]]. This exhibits an [[image]] construction in the [[topos theory|topos-theoretic]] sense, and gives rise to a [[factorization system in a 2-category]] for [[Topos]]. \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} \begin{prop} \label{}\hypertarget{}{} There is a [[factorization system on a 2-category|factorization system]] on the [[2-category]] [[Topos]] whose left class is the [[surjective geometric morphism]]s and whose right class is the [[geometric embeddings]]. Moreover, the factorization of a given geometric morphism $f : \mathcal{E} \to \mathcal{F}$ is, up to [[equivalence of categories|equivalence]], through the canonical surjection onto the [[topos of coalgebras]] $f^* f_* CoAlg(\mathcal{E})$ of the [[comonad]] $f^* f_* : \mathcal{E} \to \mathcal{E}$: \begin{displaymath} \itexarray{ \mathcal{E} &&\stackrel{f}{\to}&& \mathcal{F} \\ & {}_{\mathllap{F}}\searrow && \nearrow \\ && f^* f_* CoAlg(\mathcal{E}) } \,E. \end{displaymath} \end{prop} This appears for instance as (\hyperlink{MacLaneMoerdijk}{MacLaneMoerdijk, VII 4., theorem 6}). We use the following lemma \begin{lemma} \label{ConditionForSheafFactorization}\hypertarget{ConditionForSheafFactorization}{} Let $j$ be a [[Lawvere-Tierney topology]] on a [[topos]] $\mathcal{E}$ and write $i : Sh_j(\mathcal{E}) \to \mathcal{E}$ for the corresponding [[geometric embedding]]. Then a [[geometric morphism]] $f : \mathcal{F} \to \mathcal{E}$ factors through $i$ precisely if \begin{itemize}% \item the [[direct image]] $f_*$ takes values in $j$-sheaves; \end{itemize} or, equivalently \begin{itemize}% \item the [[inverse image]] $f^*$ sends $j$-[[dense monomorphism]]s to [[isomorphism]]s. \end{itemize} \end{lemma} This appears as (\hyperlink{MacLaneMoerdijk}{MacLaneMoerdijk, VII 4. prop. 2}). \begin{proof} We first show the first statement, that for $f$ to factor it is sufficient for $f_*$ to take values in $j$-sheaves: in that case, set \begin{displaymath} p_* := i^* f_*: \mathcal{F} \to Sh_j(\mathcal{E}) \,. \end{displaymath} Since by assumption the [[unit of an adjunction|unit]] map $x \to i_* i^* x$ is an [[isomorphism]] on the image of $f_*$ this indeed serves to factor $f_*$: \begin{displaymath} i_* p_* \simeq i_* i^* f_* \simeq f_* \,. \end{displaymath} The [[left adjoint]] to $p_*$ is then \begin{displaymath} p^* \simeq f^* i_* \,, \end{displaymath} because \begin{displaymath} \begin{aligned} \mathcal{F}(g^* E, F) & \simeq \mathcal{F}(f^* i_* E, F) \\ & \simeq \mathcal{E}(i_* E, f_* F) \\ & \simeq \mathcal{E}(i_* E, i_* i^* f_* F) \\ & \simeq Sh_j\mathcal{E} (E, i^* f_* F) \\ & \simeq Sh_j(E, p_* F) \end{aligned} \,, \end{displaymath} where in the middle steps we used that $f_* F$ is a $j$-sheaf, by assumption, and that $i_*$ is full and faithful. It is clear that $p^*$ is left exact, and so $(p^* \dashv p_*)$ is indeed a factorizing geometric morphism. We now show that $f_*$ taking values in sheaves is equivalent to $f^*$ mapping dense monos to isos. Let $u : U \hookrightarrow X$ be a $j$-[[dense monomorphism]] and $A \in \mathcal{E}$ any object. Consider the induced naturality square \begin{displaymath} \itexarray{ \mathcal{E}(X, f_* A) &\stackrel{\simeq}{\to}& \mathcal{F}(f^* X, A) \\ {}^{\mathllap{\mathcal{E}(u, f_* A)}}\downarrow && \downarrow^{\mathrlap{\mathcal{F}(f^* u, A)}} \\ \mathcal{E}(U, f_* A) &\stackrel{\simeq}{\to}& \mathcal{F}(f^* U, A) } \end{displaymath} of the adjunction [[natural isomorphism]]. If now $f_* A$ is a $j$-sheaf and $u$ a [[dense monomorphism]], then by definition the left vertical morphism is also an isomorphism and so is the right one. By the [[Yoneda lemma]] this being an iso for all $A$ is equivalent to $f^* u$ being an iso. And conversely. \end{proof} \begin{proof} Let $f : \mathcal{F} \to \mathcal{E}$ be any [[geometric morphism]]. We first discuss the existence of the factorization, then its uniqueness. To construct the factorization, we shall give a [[Lawvere-Tierney topology]] on $\mathcal{E}$ and factor $f$ through the [[geometric embedding]] of the corresponding [[sheaf topos]]. Take the closure operator $\overline{(-)} : Sub(-)_{\mathcal{E}} \to Sub(-)_{\mathcal{E}}$ to be given by sending $U \hookrightarrow X$ to the [[pullback]] \begin{displaymath} \itexarray{ \overline{U} &\to& f_* f^* U \\ \downarrow && \downarrow \\ X &\to& f_* f^* X } \,, \end{displaymath} where the bottom morphism is the $(f^* \dashv f_*)$-[[unit of an adjunction|unit]]. One checks that this is indeed a closure operator by the fact that $f^*$ preserves both pullbacks and pushouts. Notice that this implies that for two [[subobject]]s $U_1, U_2 \hookrightarrow X$ we have \begin{equation} (U_1 \subset \overline{U_2}) \;\;\; \Leftrightarrow \;\;\; (f^* U_1 \subset f^* U_2) \label{ASubobjectRelation}\end{equation} Write $j$ for the corresponding [[Lawvere-Tierney topology]] and \begin{displaymath} i : Sh_j(\mathcal{E}) \to \mathcal{E} \end{displaymath} for the corresponding [[geometric embedding]]. By lemma \ref{ConditionForSheafFactorization} we get a factorization through $I$ if $f^*$ sends $j$-[[dense monomorphism]]s to [[isomorphism]]s. But if $U \hookrightarrow X$ is dense so that $X \subset \overline{U}$ then, by \eqref{ASubobjectRelation}, $f^* X \subset f^* U$ and hence $f^* X = f^* U$. Write \begin{displaymath} f : \mathcal{F} \stackrel{p}{\to} Sh_j(\mathcal{E}) \stackrel{i}{\to} \mathcal{E} \end{displaymath} for the factorization thus established. It remains to show that $p$ here is a [[geometric surjection]]. By one of the equivalent characterizations discussed there, this is the case if $p^*$ induces an injective homomorphism of subobject lattices. So suppose that for subobjects $U_1, U_2 \subset X$ we have $p^* U_1 \simeq p^* U_2$. Observe that then also $f^* i_* U_1 \simeq f^* i_* U_2$, because \begin{displaymath} \begin{aligned} f^* i_* U_1 & \simeq p^* i^* i_* U_1 \\ & \simeq p^* U_1 \\ & \simeq p^* U_2 \\ & \simeq p^* i^* i_* U_2 \\ & \simeq f^* i:* U_2 \end{aligned} \end{displaymath} by the fact that $i_*$ is [[full and faithful functor|full and faithful]]. With \eqref{ASubobjectRelation} it follows that also \begin{displaymath} i_* U_1 \simeq \overline{i_* U_2} \end{displaymath} and hence \begin{displaymath} \cdots \simeq i_* U_2 \end{displaymath} by the very fact that $i_*$ includes $j$-sheaves in general, hence $j$-closed subobjects in particular. Finally since $i_*$ if a [[full and faithful functor]] this means that \begin{displaymath} U_1 \simeq U_2 \,. \end{displaymath} So $p^*$ is indeed injective on subobjects and so $p$ is a [[geometric surjection]]. This establishes the existence of a surjection/embedding factorization. Next we discss that this is unique. So consider two factorizations \begin{displaymath} \itexarray{ && \mathcal{A} \\ & {}^{\mathllap{p_1}}\nearrow &\Downarrow^\simeq& \searrow^{\mathrlap{i_1}} \\ \mathcal{F} &&\stackrel{f}{\to}&& \mathcal{E} \\ & {}_{\mathllap{p_2}}\searrow &\downarrow^{\simeq}& \nearrow_{\mathrlap{i_2}} \\ && \mathcal{B} } \end{displaymath} into a geometric surjection followed by a geometric embedding. We will now argue that $i_1$ factors -- essentially uniquely -- through $i_2$ in a way that makes \begin{displaymath} \itexarray{ && \mathcal{A} \\ & {}^{\mathllap{p_1}}\nearrow && \searrow^{\mathrlap{i_1}} \\ \mathcal{F} &&\downarrow^g&& \mathcal{E} \\ & {}_{\mathllap{p_2}}\searrow && \nearrow_{\mathrlap{i_2}} \\ && \mathcal{B} } \end{displaymath} commute up to natural isomorphisms. By the same argument for the upside-down situation we find an essentially unique middle vertical morphism $h : \mathcal{B} \to \mathcal{A}$ the other way round. Then essential uniqueness of these factorizations implies that $g \circ h \simeq Id$ and $h \circ g \simeq Id$. This means that the original two factorizations are equivalent. To find $g$ and $h$, use again that every [[geometric embedding]] (by the discussion there) is, up to equivalence, an inclusion of $j$-sheaves for some $j$. Find such a $j$ the bottom morphism and then use again lemma \ref{ConditionForSheafFactorization} that $i_1$ factors through $i_2$ -- essentially uniquely -- precisely if $i_1^*$ sends [[dense monomorphism]]s to isomorphisms. To see that it does, let $IU \to X$ be a dense mono and consider the naturality square \begin{displaymath} \itexarray{ p_2^* i_2^* U &\stackrel{\simeq}{\to}& p_1^* i_1^* U \\ \downarrow && \downarrow \\ p_2^* i_2^* X &\stackrel{\simeq}{\to}& p_1^* i_1^* X } \,. \end{displaymath} Since $i_2^*(U \to X)$ is an iso by definition, the left vertical morphism is, and thus so is the right vertical morphism. But since $p_1$ is a [[geometric surjection]] we have (by the discussion there) that $p_1^*$ is [[conservative functor|conservative]], and hence also $i_1^* U \to i_1^* X$ is an isomorphism. Hence $i_1$ factors via some $g$ through $i_2$ and the proof is completed by the above argument. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item For $f : X \to Y$ a [[continuous function]] between [[topological space]]s and $X \to im(f) \to Y$ its ordinary [[image]] factorization through an [[embedding]], the corresponding composite of geometric morphisms of [[sheaf topos]]es \begin{displaymath} Sh(X) \to Sh(im(f)) \to Sh(Y) \end{displaymath} is a geometric surjection/geometric embedding factorization. \item For $\mathcal{E}$ any topos, $f : X \to Y$ any morphism in $\mathcal{E}$, and $X \to im(f) \to Y$ its [[image]] factorization, the corresponding composite of [[base change geometric morphisms]] \begin{displaymath} \mathcal{E}/X \to \mathcal{E}/im(f) \to \mathcal{E}/Y \end{displaymath} is a geometric surjection/embedding factorization. \item For $f : C \to D$ any [[functor]] between [[categories]], write $C \to im(f) \to D$ for its [[essential image]] factorization. Then the induced composite \begin{displaymath} [C^{op}, Set] \stackrel{}{\to} [im(f)^{op}, Set] \to [D^{op}, Set] \end{displaymath} is a geometric surjection/embedding factorization. \end{itemize} See (\hyperlink{MacLaneMoerdijk}{MacLaneMoerdijk, p. 377}). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{as_idempotent_approximation}{}\subsubsection*{{As idempotent approximation}}\label{as_idempotent_approximation} A geometric morphism $f:\mathcal{F}\to\mathcal{E}$ induces via the adjunction $f^\ast\vdash f_\ast$ a [[monad]] on $\mathcal{E}$. Due to a general result by S. Fakir this induces an associated [[idempotent monad]] on $\mathcal{E}$ and this idempotent approximation coincides with the monad induced by $i^\ast\vdash i_\ast$ given by the inclusion $i$ from the factorization $f=i\circ q$. For references and further details on the idempotent approximation see at [[idempotent monad]]. \hypertarget{a_logical_description}{}\subsubsection*{{A logical description}}\label{a_logical_description} Let $T$ be a [[geometric theory]] over a signature $\Sigma$ and $f:\mathcal{E}\to Set[T]$ a geometric morphism to its [[classifying topos]]. Then by the general properties of a classifying topos, $f$ corresponds to a certain $T$-model $M$ in $\mathcal{E}$. Notice that every geometric morphism $f$ between [[Grothendieck toposes]] is of this form for some geometric theory $T$ and hence corresponds to some model $M$ ! This model permits to attach a geometric theory to $f$ as well: The \textbf{theory of M} $Th(M)$ consists of all geometric sequents $\sigma$ over $\Sigma$ such that $M\models \sigma$. Then the following holds (\hyperlink{Caramello09}{Caramello 2009}, p.57): \begin{prop} \label{}\hypertarget{}{} The topos occurring in the middle of the surjection-embedding factorization of $f$ is precisely the classifying topos for $Th(M)$: $\mathcal{E}\twoheadrightarrow Set[Th(M)]\hookrightarrow Set[T]$. \end{prop} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[open subtopos]] \item [[(dense,closed)-factorization]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Peter Johnstone]], \emph{Topos Theory} , Academic Press 1977 (Dover reprint 2014). (section 4.1, pp.103-107) \item [[Peter Johnstone]], \emph{[[Sketches of an Elephant]] vol. I}, Oxford UP 2002. (section A4.2, pp.172ff) \item [[Saunders MacLane]], [[Ieke Moerdijk]], \emph{[[Sheaves in Geometry and Logic]]} , Springer Heidelberg 1994. (section VII.4) \end{itemize} \begin{itemize}% \item [[Olivia Caramello|O. Caramello]], \emph{Lattices of theories} , arXiv:0905.0299v1 (2009). (\href{http://arxiv.org/pdf/0905.0299v1}{pdf}) \end{itemize} [[!redirects geometric surjection/embedding factorization]] [[!redirects geometric surjection/inclusion factorization]] [[!redirects geometric surjection/embedding factorization system]] [[!redirects geometric surjection/inclusion factorization system]] [[!redirects (geometric surjection, inclusion) factorization system]] \end{document}