\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{(infinity,1)-Grothendieck construction} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{for_fibrations_in_groupoids}{For fibrations in $\infty$-groupoids}\dotfill \pageref*{for_fibrations_in_groupoids} \linebreak \noindent\hyperlink{GrpdModelCatVersion}{Model category presentation}\dotfill \pageref*{GrpdModelCatVersion} \linebreak \noindent\hyperlink{GrpdFibsOverGrpds}{Remark: $(\infty,0)$-fibrations over an $\infty$-groupoid}\dotfill \pageref*{GrpdFibsOverGrpds} \linebreak \noindent\hyperlink{for_general_fibered_categories}{For general fibered $(\infty,1)$-categories}\dotfill \pageref*{for_general_fibered_categories} \linebreak \noindent\hyperlink{ModCatCart}{Model category presentation}\dotfill \pageref*{ModCatCart} \linebreak \noindent\hyperlink{OverCat}{Over an ordinary category}\dotfill \pageref*{OverCat} \linebreak \noindent\hyperlink{relation_beween_the_model_structures}{Relation beween the model structures}\dotfill \pageref*{relation_beween_the_model_structures} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{as_an_oplax_colimit}{As an (op)lax $\infty$-colimit}\dotfill \pageref*{as_an_oplax_colimit} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{cartesian_fibrations_over_the_point}{Cartesian fibrations over the point}\dotfill \pageref*{cartesian_fibrations_over_the_point} \linebreak \noindent\hyperlink{FibsOverInterval}{Cartesian fibrations over the interval}\dotfill \pageref*{FibsOverInterval} \linebreak \noindent\hyperlink{CartOverSimplex}{Cartesian fibrations over simplices}\dotfill \pageref*{CartOverSimplex} \linebreak \noindent\hyperlink{the_universal_cartesian_fibration}{The universal Cartesian fibration}\dotfill \pageref*{the_universal_cartesian_fibration} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{$(\infty,1)$-Grothendieck construction} is a generalization of the [[Grothendieck construction]] -- which establishes an equivalence \begin{displaymath} Fib(C) \simeq 2Func(C^{op}, Cat) \end{displaymath} and \begin{displaymath} Fib_{Grpd}(C) \simeq 2Func(C^{op}, Grpd) \end{displaymath} between [[fibered category|fibered categories]]/[[categories fibered in groupoids]] and [[pseudofunctor]]s to [[Cat]]/to [[Grpd]] -- from [[category theory]] to [[(∞,1)-category]]-[[higher category theory|theory]]. The Grothendieck construction for [[∞-groupoid]]s constitutes an equivalence of [[(∞,1)-categories]] \begin{displaymath} RFib(C) \simeq \infty Func(C^{op}, \infty Grpd) \end{displaymath} between [[right fibration]]s [[fibrations of quasi-categories|of quasi-categories]] and [[(∞,1)-functor]]s to [[? Grpd]], while the full Grothendieck construction for [[(∞,1)-categories]] constitutes an equivalence \begin{displaymath} CartFib(C) \simeq \infty Func(C^{op}, (\infty,1)Cat) \end{displaymath} between [[Cartesian fibration]]s [[fibrations of quasi-categories|of quasi-categories]] and [[indexed (∞,1)-categories]], that is, [[(∞,1)-functor]]s to [[(∞,1)Cat]]. This correspondence may be [[model category|modeled]] \begin{itemize}% \item in the case of $\infty$-groupoids by a [[Quillen equivalence]] between the [[model structure for right fibrations]] and the projective [[global model structure on simplicial presheaves]] \item in the case of $(\infty,1)$-categories by a Quillen equivalence between the [[model structure for Cartesian fibrations]] and the [[global model structure on functors]] with values in the [[model structure on marked simplicial over-sets|model structure on marked simplicial sets]]. \end{itemize} \hypertarget{for_fibrations_in_groupoids}{}\subsection*{{For fibrations in $\infty$-groupoids}}\label{for_fibrations_in_groupoids} The generalization of a [[category fibered in groupoids]] to [[quasi-category]] theory is a [[right fibration|right]] [[fibrations of quasi-categories|fibration of quasi-categories]]. \begin{utheorem} \textbf{($(\infty,0)$-Grothendieck construction)} Let $C$ be an [[(∞,1)-category]]. There is an equivalence of [[(∞,1)-categories]] \begin{displaymath} RFib(C) \simeq Func(C^{op}, \infty Grpd) \end{displaymath} where \begin{itemize}% \item on the left we have the [[right fibration|(∞,1)-category of right fibrations]] $RFib(C)$ -- incarnated as the full [[SSet]]-[[subcategory]] of the [[overcategory]] $SSet/C$ on [[right fibration]]s; \item and on the right the [[(∞,1)-category of (∞,1)-functors]] from the [[opposite category]] $C^{op}$ to [[∞Grpd]], i.e. the [[(∞,1)-category of (∞,1)-presheaves]] on $C$. \end{itemize} \end{utheorem} In the next section we discuss how this statement is presented in terms of [[model categories]]. \hypertarget{GrpdModelCatVersion}{}\subsubsection*{{Model category presentation}}\label{GrpdModelCatVersion} We discuss a [[presentable (∞,1)-category|presentation]] of the $(\infty,0)$-Grothendieck construction by a [[simplicial Quillen adjunction]] between [[simplicial model categories]]. ([[Higher Topos Theory|HTT, section 2.2.1]]). \begin{udef} \textbf{(extracting a simplicial presheaf from a fibration)} Let \begin{itemize}% \item $S$ be a [[simplicial set]], $\tau_hc(S)$ the corresponding [[SSet-category]] (under the [[left adjoint]] $\tau_{hc} : SSet \to SSet Cat$ of the [[homotopy coherent nerve]], denoted $\mathfrak{C}$ in [[Higher Topos Theory|HTT]]); \item $C$ an [[SSet-category]]; \item $\phi : \tau_{hc}(S) \to C$ a morphism of [[SSet-categories]]. \end{itemize} \begin{quote}% In particular we will be interested in the case that $\phi$ is the identity, or at least an equivalence, identifying $C$ with $\tau_{hc}(S)$. \end{quote} For any object $(p : X\to S)$ in $sSet/S$ consider the [[sSet-category]] $K(\phi,p)$ obtained as the (ordinary) [[pushout]] in [[SSet Cat]] \begin{displaymath} \itexarray{ \tau_{hc}(X) &\stackrel{}{\to}& \tau_{hc}(X^{\triangleright}) \\ {}^{\mathllap{\phi(p)}}\downarrow && \downarrow \\ C &\to& K(\phi,p) } \,, \end{displaymath} where $X^{\triangleright} = X \star \{v\}$ is the [[join of simplicial sets]] of $X$ with a single vertex $v$. Using this construction, define a functor, the \textbf{[[straightening functor]]}, \begin{displaymath} St_\phi : sSet/S \to [C^{op}, sSet] \end{displaymath} from the [[overcategory]] of [[sSet]] over $S$ to the [[enriched functor category]] of [[sSet]]-[[enriched functor]]s from $C^{op}$ to $sSet$ by defining it on objects $(p : X \to S)$ to act as \begin{displaymath} St_\phi(X) := K(\phi,p)(-,v) : C^{op} \to SSet \,. \end{displaymath} \end{udef} \begin{uexample} The straightening functor effectively computes the fibers of a [[Cartesian fibration]] $(p : X \to C)$ over every point $x \in C$. As an illustration for how this is expressed in terms of morphisms in that pushout, consider the simple situation where \begin{itemize}% \item $C = *$ only has a single point; \item $X = \left\{ a \to b \;\;\; c\right\}$ is a category with three objects, two of them connected by a morphism \item $p : X\to C$ is the only possible functor, sending everything to the point. \end{itemize} Then \begin{itemize}% \item $X^{\triangleright} = \left\{ \itexarray{ a &\to& b && c \\ & \searrow \Leftarrow& \downarrow & \swarrow \\ && v } \right\}$ \end{itemize} and \begin{itemize}% \item $X^{\triangleright} \coprod_{X} C = \left\{ \itexarray{ && \bullet \\ & \swarrow & \downarrow & \searrow \\ \downarrow& \Leftarrow & \downarrow \\ & \searrow & \downarrow & \swarrow \\ && v } \right\}$ \end{itemize} Therefore the category of morphisms in this pushout from $*$ to $v$ is indeed again the category $\{a \to b \;\;\; c\}$. More on this is at [[Grothendieck construction]] in the section of adjoints to the Grothendieck construction. \end{uexample} \begin{uprop} With the definitions \hyperlink{UnmarkedStraighteningFunctor}{as above}, let $\pi : C \to C'$ be an [[sSet]]-[[enriched functor]] between [[sSet-categories]]. Write \begin{displaymath} \pi_! : [C^{op}, sSet] \to [{C'}^{op}, sSet] \end{displaymath} for the left [[sSet]]-[[Kan extension]] along $\pi$. There is a [[natural isomorphism]] of the straightening functor for the composite $\pi \circ \phi$ and the original straightening functor for $\phi$ followed by left [[Kan extension]] along $\pi$: \begin{displaymath} St_{\pi \circ \phi} \simeq \pi_! \circ St_\phi \,. \end{displaymath} \end{uprop} This is [[Higher Topos Theory|HTT, prop. 2.2.1.1.]]. The following proof has kindly been spelled out by [[Harry Gindi]]. \begin{proof} We unwind what the [[sSet-categories]] with a single object adjoined to them look like: let \begin{displaymath} F : C^{op} \to sSet \end{displaymath} be an [[sSet]]-[[enriched functor]]. Define from this a new [[sSet-category]] $C_F$ by setting \begin{itemize}% \item $Obj(C_F) = Obj(C) \coprod \{\nu\}$ \item $C_F(c,d) = \left\{ \itexarray{ C(c,d) & for c,d \in Obj(C) \\ F(c) & for c \in Obj(c) and d = \nu \\ \emptyset & for c = \nu and d \in Obj(C) \\ * & for c = d = \nu } \right.$ \end{itemize} The composition operation is that induced from the composition in $C$ and the enriched functoriality of $F$. Observe that the [[sSet-category]] $K(\phi,p)$ appearing in the \hyperlink{UnmarkedStraighteningFunctor}{definition of the straightening functor} is \begin{displaymath} K(\phi,p) \simeq C_{St_\phi(X)} \end{displaymath} (because $K(\phi,p)$ is $C$ with a single object $\nu$ and some morphisms to $\nu$ adjoined, such that there are no non-degenerate morphisms originating at $\nu$, we have that $K(\phi,p)$ is of form $C_F$ for some $F$; and $St_\phi(X)$ is that $F$ by definition). To prove the proposition, we need to compute the pushout \begin{displaymath} \itexarray{ \tau_{hc}(X) &\to& \tau_{hc}(X^{\triangleright}) \\ \downarrow && \downarrow \\ C &\to& K(\phi,p) = C_{St_\phi(X)} \\ {}^{\mathllap{\pi}}\downarrow && \downarrow \\ C' &\to& Q } \end{displaymath} and show that indeed $Q \simeq C'_{\pi_! St_\phi(X)}$. Using the pasting law for [[pushout]]s (see [[pullback]]) we just have to compute the lower square pushout. Here the statement is a special case of the following statement: for every [[sSet-category]] of the form $C_F$, the pushout of the canonical inclusion $C\to C_F$ along any $sSet$-functor $\pi : C \to C'$ is $C'_{\pi_! F}$. This follows by inspection of what a cocone \begin{displaymath} \itexarray{ C &\stackrel{\iota}{\to}& C_F \\ {}^{\mathllap{\pi}}\downarrow && \downarrow^{\mathrlap{d}} \\ C' &\underset{r}{\to}& Q } \end{displaymath} is like: by the nature of $C_F$ the functor $d$ is characterized by a functor $d|_C : C \to Q$, an object $d(\nu) \in Q$ together with a [[natural transformation]] \begin{displaymath} F(c) \to Q(d|_C(c), d(\nu)) \end{displaymath} being the component $F_{c,\nu} : C_F(c,\nu) \to Q(d(c), d(\nu))$ of the $sSet$-functor. We may write this natural transformation as \begin{displaymath} F \to (d|_C)^* Q(-,d(\nu)) = \iota^* d^* \nu Q(-,d(\nu)) \,, \end{displaymath} where $d^*$ etc. means precomposition with the functor $d$. By commutativity of the diagram this is \begin{displaymath} \cdots \simeq \pi^* r^* Q(-,d(\nu)) \,. \end{displaymath} Now by the definition of left [[Kan extension]] $\pi_!$ as the [[left adjoint]] to prescomposition with a functor, this is bijectively a transformation \begin{displaymath} \eta : \pi_! F \to r^* Q(-,d(\nu)) \,. \end{displaymath} Using this we see that we may find a universal cocone by setting $Q := C'_{\pi_! F}$ with $r : C' \to Q$ the canonical inclusion and $C_{F} \to C'_{\pi_! F}$ given by $\pi$ on the restriction to $C$ and by the [[unit of an adjunction|unit]] $F \to \pi^* \pi_! F$ on $C_F(c,\nu)$. For this the [[adjunct]] transformation $\eta$ is the identity, which makes this universal among all cocones. \end{proof} \begin{uprop} This functor has a [[right adjoint]] \begin{displaymath} Un_\phi : [C^{op}, sSet] \to sSet/S \,, \end{displaymath} that takes a [[simplicial presheaf]] on $C$ to a simplicial set over $S$ -- this is the \textbf{unstraightening functor}. \end{uprop} \begin{proof} One checks that $St_\phi$ preserves [[colimit]]s. The claim then follows with the [[adjoint functor theorem]]. \end{proof} \begin{utheorem} \textbf{(presentation of the $(\infty,0)$-Grothendieck construction)} The straightening and the unstraightening functor constitute a [[Quillen adjunction]] \begin{displaymath} (St_\phi \dashv Un_\phi) : sSet/S \stackrel{\overset{Un_{\phi}}{\leftarrow}}{\underset{St_\phi}{\to}} [C^{op}, sSet] \end{displaymath} between the [[model structure for right fibrations]] and the global projective [[model structure on simplicial presheaves]] on $S$. If $\phi$ is a weak equivalence in the [[model structure on simplicial categories]] then this Quillen adjunction is a [[Quillen equivalence]]. \end{utheorem} This is [[Higher Topos Theory|HTT, theorem 2.2.1.2]]. This models the Grothendieck construction for [[∞-groupoid]]s in the following way: \begin{itemize}% \item the [[presentable (∞,1)-category|(∞,1)-category presented by]] $sSet/S$ is $RFib(S)$ ([[Higher Topos Theory|HTT, lemma 2.2.3.9]]) \item the [[presentable (∞,1)-category|(∞,1)-category presented by]] the global [[model structure on simplicial presheaves]] $[C^{op}, SSet]$ is [[(∞,1)-category of (∞,1)-presheaves]] $PSh_{(\infty,1)}(N_{hc}(C))$ \end{itemize} Hence the unstraightening functor is what models the [[Grothendieck construction]] proper, in the sense of a construction that generalizes the construction of a [[fibered category]] from a [[pseudofunctor]]. \hypertarget{GrpdFibsOverGrpds}{}\subsubsection*{{Remark: $(\infty,0)$-fibrations over an $\infty$-groupoid}}\label{GrpdFibsOverGrpds} \begin{ulemma} Let $C$ itself be an $\infty$-groupoid. Then $RFib(C) \simeq \infty Grpd/C$ and hence \begin{displaymath} \infty Grpd/C \simeq [C^{op}, \infty Grpd] \,. \end{displaymath} \end{ulemma} \begin{proof} By the fact that there is the standard [[model structure on simplicial sets]] we have that every morphism of $\infty$-groupoids $X \to C$ factors as \begin{displaymath} \itexarray{ X &&\stackrel{\simeq}{\to}&& \hat X \\ & \searrow && \swarrow_{\mathrlap{fib}} \\ && C } \,, \end{displaymath} where the top morphism is an equivalence and the right morphism a [[Kan fibration]]. Moreover, as discussed at [[right fibration]], over an $\infty$-groupoid the notions of left/right fibrations and Kan fibrations coincide. This shows that the full [[sub-(∞,1)-category]] of $\infty Grpd/X$ on the right fibrations is equivalent to all of $\infty Grpd/X$. \end{proof} \hypertarget{for_general_fibered_categories}{}\subsection*{{For general fibered $(\infty,1)$-categories}}\label{for_general_fibered_categories} The generalization of a [[fibered category]] to [[quasi-category]] theory is a [[Cartesian fibration|Cartesian]] [[fibrations of quasi-categories|fibration of quasi-categories]]. \begin{utheorem} \textbf{($(\infty,1)$-Grothendieck construction)} Let $C$ be an [[(∞,1)-category]]. There is an equivalence \begin{displaymath} Cart(C) \simeq Func(C^{op}, (\infty,1) Cat) \end{displaymath} where \begin{itemize}% \item on the left we have the $(\infty,1)$-category of [[Cartesian fibration]]s over $C$ -- incarnated as a [[sSet]]-[[subcategory]] of the [[overcategory]] $sSet/C$ on [[Cartesian fibration]]s; \item and on the right the [[(∞,1)-category of (∞,1)-functors]] from $C^{op}$ to the [[(∞,1)-category of (∞,1)-categories]]. \end{itemize} \end{utheorem} In the next section we discuss how this statement is presented in terms of [[model categories]]. \hypertarget{ModCatCart}{}\subsubsection*{{Model category presentation}}\label{ModCatCart} Regard the [[(∞,1)-category]] $C$ in its incarnation as a [[simplicially enriched category]]. Let $S$ be a [[simplicial set]], $\tau_{hc}(S)$ the corresponding [[simplicially enriched category]] (where $\tau_{hc}$ is the [[left adjoint]] of the [[homotopy coherent nerve]]) and let $\phi : \tau_{hc}(S) \to C$ be an [[sSet]]-[[enriched functor]]. \begin{udef} \textbf{(extracting a marked simplicial presheaf from a marked fibration)} (HTT, section 3.2.1) The \textbf{straightening functor} \begin{displaymath} St_\phi : sSet^+/S \to [C^{op}, sSet^+] \end{displaymath} from [[marked simplicial set]]s over $S$ to marked [[simplicial presheaves]] on $C^{op}$ is on the underlying simplicial sets (forgetting the marking) the same straightening functor as \hyperlink{GrpdModelCatVersion}{above}. On the markings the functor acts as follows. Each edge $f: d \rightarrow e$ of $X \in sSet/S$ gives rise to an edge $\tilde f \in St_\phi (X)(d) = K(\phi,p)(d,v)$: the [[join of simplicial sets|join]] 2-simplex $f \star v$ of $X^{\triangleright}$ \begin{displaymath} \itexarray{ d && \stackrel{f}{\to} && e \\ & {}_{\mathllap{\tilde d}}\searrow & \stackrel{\tilde f}{\Rightarrow} & \swarrow_{\mathrlap{\tilde e}} \\ && v } \end{displaymath} with image $\tilde f : \tilde d \to f^* \tilde e$ in the pushout $K(\phi,p)(d,v)=St_\phi X(d)$. We define the straightening functor to assign that marking of edges which is the minimal one such that all such morphisms $\tilde f$ are marked in $St_\phi X(d)$, for all marked $f : d \to e$ in $X$: this means that this marking is being completed under the constraint that $St_\phi(X)$ be [[sSet]]-[[enriched functor|enriched functorial]]. For that, [[marked simplicial set|recall]] that the hom simplicial sets of $sSet^+$ are the spaces $Map^\sharp(X,Y)$, which consist of those simplices of the [[internal hom]] $Map(X,Y) := Y^X$ whose edges are all marked: \begin{displaymath} Map(X,Y)_n = Hom_{sSet^+}(X \times \Delta[n]^#, Y) \,. \end{displaymath} So we need to find a marking on the $St_\phi(X)(-)$ such that for all $g : \Delta[1] \to C(c,d)$ the composite \begin{displaymath} \Delta[1] \stackrel{g}{\to} C(c,d) \stackrel{St_\phi(X)(c,d)}{\to} Map(St_\phi(X)(d), St_\phi(X)(c)) \end{displaymath} is a marked edge of the mapping complex. By the internal hom-adjunction this edge corresponds to a morphism \begin{displaymath} St_\phi(X)(g) : St_\phi(X)(d) \times \Delta[1] \rightarrow St_\phi(X)(c) \end{displaymath} and to be marked needs to carry edges of the form $\tilde f \times \{0 \to 1\}$ i.e. 1-cells $(\tilde f , Id) : \Delta[1] \to St_\phi(X)(d) \times \Delta[1]$ to marked edges \begin{displaymath} g^* \tilde f : \Delta[1] \stackrel{(\tilde f,Id)}{\to} St_\phi(X)(d)\times \Delta[1] \stackrel{St_\phi(X)(g)}{\to} St_{\phi}(X)(c) \end{displaymath} in $St_\phi(X)(c)$. So we need to ensure that the edges of this form are marked: we define that the straightening functor marks an edge in $St_\phi(X)(c)$ iff it is of this form $g^* \tilde f$, for $f : d \to e$ a marked edge of $X$ and $g \in C(c,d)_1$. As in the unmarked cae, the straightening functor has an [[sSet]]-[[right adjoint]], the \textbf{unstraightening functor} \begin{displaymath} n_\phi : [C^{op}, sSet^+] \to sSet^+/S \,. \end{displaymath} \end{udef} This functor $Un_\phi$ exhibits the $(\infty,1)$-Grothendieck-construction proper, in that it constructs a [[Cartesian fibration]] from a given $(\infty,1)$-functor: \begin{utheorem} \textbf{(presentation of $(\infty,1)$-Grothendieck construction)} This induces a [[Quillen adjunction]] \begin{displaymath} (St_\phi \dashv Un_\phi) : SSet^+/S \stackrel{\overset{Un_{\phi}}{\leftarrow}}{\underset{St_\phi}{\to}} [C^{op}, SSet^+] \end{displaymath} between the [[model structure for Cartesian fibrations]] and the projective [[global model structure on functors]] with values in the [[model structure on marked simplicial over-sets|model structure on marked simplicial sets]]. If $\phi$ is an equivalence in the [[model structure on simplicial categories]] then this Quillen adjunction is a [[Quillen equivalence]]. \end{utheorem} \begin{proof} This is [[Higher Topos Theory|HTT, theorem 3.2.0.1]]. \end{proof} \hypertarget{OverCat}{}\paragraph*{{Over an ordinary category}}\label{OverCat} In the case that $C$ happens to be an ordinary [[category]], the $(\infty,1)$-Grothendieck construction can be simplified and given more explicitly. This is [[Higher Topos Theory|HTT, section 3.2.5]]. \begin{udef} \textbf{(relative nerve functor)} Let $C$ be a small category and let $f : C \to sSet$ be a functor. The simplicial set $N_f(C)$, the \textbf{relative nerve} of $C$ under $f$ is defined as follows: an $n$-cell of $N_f(C)$ is \begin{enumerate}% \item a functor $\sigma : [n] \to C$; \item for every $[k] \subset [n]$ a morphism $\tau(k) : \Delta[k] \to f(\sigma(k))$; \item such that for all $[j] \subset [k] \subset [n]$ the diagram \begin{displaymath} \itexarray{ \Delta[j] &\stackrel{\tau(j)}{\to}& f(\sigma(j)) \\ \downarrow && \downarrow^{\mathrlap{f(\sigma(j\to k))}} \\ \Delta[k] &\stackrel{\tau(k)}{\to}& f(\sigma(k)) } \end{displaymath} commutes. \end{enumerate} There is a canonical morphism \begin{displaymath} N_f(C) \to N(C) \end{displaymath} to the ordinary [[nerve]] of $C$, obtained by forgetting the $\tau$s. \end{udef} This is [[Higher Topos Theory|HTT, def. 3.2.5.2]]. \begin{uremark} When $f$ is constant on the point, then $N_f(C) \to N(C)$ is an isomorphism of simplicial sets, so $N_f(C)$ this is the ordinary [[nerve]] of $C$. The [[fiber]] of $N_f(C) \to N(C)$ over an object $c \in C$ is given by taking $\sigma$ to be constant on $C$. Then all the $\tau$s are fixed by the maximal $\tau(n) : \Delta[n] \to f(c)$. So the fiber of $N_f(C)$ over $c$ is $f(c)$. \end{uremark} \begin{udef} \textbf{(marked relative nerve functor)} Let $C$ be a small [[category]]. Define a functor \begin{displaymath} sSet^+/N(C) \leftarrow [C, sSet^+] : N^+ \end{displaymath} by \begin{displaymath} (C \stackrel{F}{\to} sSet^+) \mapsto (N_f(C), E_F) \,, \end{displaymath} where $f : C^{op} \stackrel{F}{\to} sSet^+ \to sSet$ is $F$ with the marking forgotten, where $N_f(C)$ is the relative nerve of $C$ under $f$, and where the marking $E_F$ is given by \ldots{} \end{udef} This is [[Higher Topos Theory|HTT, def. 3.2.5.12]]. This functor has a [[left adjoint]] $\mathcal{F}^+$. The value of $\mathcal{F}^+(F)$ on some $c \in C$ is equivalent to the value of $St(F)$. This is [[Higher Topos Theory|HTT, Lemma 3.2.5.17]]. \begin{uprop} \textbf{($(\infty,1)$-Grothendieck construction over a category)} The adjunction \begin{displaymath} (\mathcal{F}^+ \dashv N^+) : sSet^+_{/N(C)} \stackrel{\overset{\mathcal{F}^+}{\to}}{\underset{N^+}{\leftarrow}} [C,sSet^+] \,. \end{displaymath} is a [[Quillen equivalence]] between the [[model structure for Cartesian fibrations|model structure for coCartesian fibrations]] and the projective [[global model structure on functors]]. \end{uprop} \begin{proof} This is [[Higher Topos Theory|HTT, prop. 3.2.5.18]]. \end{proof} \hypertarget{relation_beween_the_model_structures}{}\subsubsection*{{Relation beween the model structures}}\label{relation_beween_the_model_structures} \begin{utheorem} Let $S$ be a [[simplicial set]]. There is a sequence of [[Quillen adjunction]]s \begin{displaymath} (sSet/S)_{Joyal} \stackrel{\overset{}{\to}}{\overset{}{\leftarrow}} sSet^+/S \stackrel{\overset{}{\to}}{\overset{}{\leftarrow}} (sSet^+/S)^{loc} \stackrel{\overset{}{\to}}{\overset{}{\leftarrow}} (sSet/S)_{rfib} \stackrel{\overset{}{\to}}{\overset{}{\leftarrow}} (sSet/S)_{Quillen} \,. \end{displaymath} Where from left to right we have \begin{enumerate}% \item the [[model structure on an overcategory]] for the Joyal [[model structure for quasi-categories]]; \item the [[model structure for Cartesian fibrations]]; \item some localizaton of the model structure for Cartesian fibrations; \item the [[model structure for right fibrations]] \item the [[model structure on an overcategory]] for the Quillen [[model structure on simplicial sets]]; \end{enumerate} The first and third Quillen adjunction here is a [[Quillen equivalence]] if $S$ is a [[Kan complex]]. \end{utheorem} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{as_an_oplax_colimit}{}\subsubsection*{{As an (op)lax $\infty$-colimit}}\label{as_an_oplax_colimit} The $(\infty,1)$-Grothendieck construction on an $\infty$-functor is equivalently its [[lax (infinity,1)-colimit]] (\hyperlink{GepnerHaugsengNikolaus15}{Gepner-Haugseng-Nikolaus 15}). See also at \emph{[[Grothendieck construction]]} \emph{\href{Grothendieck%20construction#AsALaxColimit}{as a lax colimit}}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{cartesian_fibrations_over_the_point}{}\subsubsection*{{Cartesian fibrations over the point}}\label{cartesian_fibrations_over_the_point} For the base category $S$ being the point $S = {*}$, the $(\infty,1)$-Grothendieck construction naturally becomes essentially trivial. However, its model by the Quillen functor \begin{displaymath} St_\phi : sSet/* \simeq sSet \to [*,sSet] \simeq sSet \end{displaymath} is not entirely trivial and in fact produces a Quillen auto-equivalence of $sSet_{Quillen}$ with itself that plays a central role in the proof of the corresponding Quillen equivalence over general $S$. \textbf{Definition} Let $Q : \Delta \to sSet$ be the [[cosimplicial object|cosimplicial]] [[simplicial set]] given by \begin{displaymath} Q[n] := |J^n|(x,v) \,, \end{displaymath} where \begin{displaymath} J^n = C^{\triangleleft}(\Delta[n] \to \{x\}) \,. \end{displaymath} Then: [[nerve and realization]] associated to $Q$ yield a [[Quillen equivalence]] of $sSet_{Quillen}$ with itself. [[Higher Topos Theory|HTT, section 2.2.2]]. \ldots{} \hypertarget{FibsOverInterval}{}\subsubsection*{{Cartesian fibrations over the interval}}\label{FibsOverInterval} A [[Cartesian fibration]] $p : K \to \Delta[1]$ over the 1-[[simplex]] corresponds to a morphism $\Delta[1]^{op} \to$ [[(∞,1)Cat]], hence to an [[(∞,1)-functor]] $F : D \to C$. By the above procedure we can express $F$ as the image of $p$ under the straightening functor. However, there is a more immediate way to extract this functor, which we now describe. First recall the situation for the ordinary [[Grothendieck construction]]: given a [[Grothendieck fibration]] $K \to \{0 \to 1\}$, we obtain a functor $f : K_1 \to K_0$ between the fibers, by \emph{choosing} for each object $d \in K_1$ a [[Cartesian morphism]] $e_d \to d$. Then the universal property of Cartesian morphism yields for every morphism $d_1 \to d_2$ in $K_1$ the unique left vertical filler in \begin{displaymath} \itexarray{ e_{d_1} &\to& d_1 \\ \downarrow && \downarrow \\ e_{d_2} &\to& d_2 } \,. \end{displaymath} And again by universality, this assignment is functorial: $K_1 \to K_0$. Diagrammatically, the choice of Cartesian morphisms here is a lift $e$ in the diagram \begin{displaymath} \itexarray{ K_1 &\hookrightarrow& K \\ \downarrow &\nearrow_e& \downarrow \\ K_1 \times \{0 \to 1\} &\to& \{0 \to 1\} } \,. \end{displaymath} This diagrammatic way of encoding the functor associated to a Grothendieck fibration over the interval generalizes straightforwardly to the [[quasi-category]] context. \begin{udefn} Given a [[Cartesian fibration]] $p : K \to \Delta[1]$ with fibers the [[quasi-categories]] $C := K_{0}$ and $D := K_{1}$, an \textbf{$(\infty,1)$-functor associated to the Cartesian fibration} $p$ is a functor $f : D \to C$ such that there exists a commuting diagram in [[sSet]] \begin{displaymath} \itexarray{ D \times \Delta[1] &&\stackrel{F}{\to}&& K \\ & \searrow && \swarrow_{\mathrlap{p}} \\ && \Delta[1] } \end{displaymath} such that \begin{itemize}% \item $F|_{1} = Id_D$; \item $F|_{0} = f$; \item and for all $d \in D$, $F(\{d\}\times \{0 \to 1\})$ is a [[Cartesian morphism]] in $K$. \end{itemize} More generally, if we also specify possibly nontrivial [[equivalence of quasi-categories|equivalences of quasi-categories]] $h_0 : C \stackrel{\simeq}{\to} K_{0}$ and $h_1 : D \stackrel{\simeq}{\to} K_{1}$, then a functor is associated to $K$ and this choice of equivalences if the first twoo conditions above are generalized to \begin{itemize}% \item $F|_{1} = h_1$; \item $F|_{0} = h_0 \circ f$; \end{itemize} \end{udefn} This is [[Higher Topos Theory|HTT, def. 5.2.1.1]]. \begin{uprop} For $p : K \to \Delta[1]$ a Cartesian fibration, the associated functor exists and is unique up to equivalence in the [[(∞,1)-category of (∞,1)-functors]] $Func(K_{0}, K_{1})$. \end{uprop} \begin{proof} This is [[Higher Topos Theory|HTT, prop 5.2.1.5]]. Set $C := K_{0}$ and $D := K_{1}$. With the notation described at [[model structure for Cartesian fibrations]], consider the commuting diagram \begin{displaymath} \itexarray{ D^\flat \times \{1\} &\hookrightarrow& K^{\sharp} \\ \downarrow && \downarrow^{\mathrlap{p}} \\ D^{\flat} \times \Delta[1]^{#} &\to& \Delta[1]^# } \end{displaymath} in the category $sSet^+$ of marked simplicial sets. Here the left vertical morphism is \href{http://ncatlab.org/nlab/show/model+structure+for+Cartesian+fibrations#MarkedAnodyne}{marked anodyne}: it is the [[smash product]] of the marked cofibration (monomorphism) $Id : D^\flat \to D^\flat$ with the marked anodyne morphism $\Delta[1]^# \to \Delta[0]$. By the stability properties discussed at \href{http://ncatlab.org/nlab/show/model+structure+for+Cartesian+fibrations#MarkedAnodyne}{Marked anodyne morphisms}, this implies that the morphism itself is marked anodyne. As discussed there, this means that a lift $d : D^\flat \times \Delta[1]^# \to K^{\sharp}$ against the Cartesian fibration in \begin{displaymath} \itexarray{ D^\flat \times \{1\} &\hookrightarrow& K^{\sharp} \\ \downarrow &\nearrow_{s}& \downarrow^{\mathrlap{p}} \\ D^{\flat} \times \Delta[1]^{#} &\to& \Delta[1]^# } \end{displaymath} exists. This exhibits an associated functor $f := s_0$. Suppose now that another associated functor $f'$ is given. It will correspondingly come with its diagram \begin{displaymath} \itexarray{ D^\flat \times \{1\} &\hookrightarrow& K^{\sharp} \\ \downarrow &\nearrow_{s'}& \downarrow^{\mathrlap{p}} \\ D^{\flat} \times \Delta[1]^{#} &\to& \Delta[1]^# } \,. \end{displaymath} Together this may be arranged to a diagram \begin{displaymath} \itexarray{ D^\flat \times \Lambda[2]_2 &\stackrel{(s,s')}{\to}& K^{\sharp} \\ \downarrow &\nearrow_{q}& \downarrow^{\mathrlap{p}} \\ D^{\flat} \times \Delta[2]^{#} &\to& \Delta[1]^# } \,, \end{displaymath} where the top horizontal morphism picks the 2-[[horn]] in $K$ whose two edges are labeled by $s$ and $s'$, respectively. Now, the left vertical morphism is still marked anodyne, and hence the lift $k$ exists, as indicated. Being a morphism of marked simplicial sets, it must map for each $d \in D$ the edge $\{d\}\times \{0\to 1\}$ to a [[Cartesian morphism]] in $K$, and due to the commutativity of the diagram this morphism must be in $K_0$, sitting over $\{0\}$. But as discussed there, a [[Cartesian morphism]] over a point is an equivalence. This means that the restriction \begin{displaymath} k|_{D \times \{0 \to 1\}} \to K_0 \end{displaymath} is an invertible [[natural transformation]] between $f$ and $f'$, hence these are equivalent in the functor category. \end{proof} Conversely, every functor $f : D \to C$ gives rise to a Cartesian fibration that it is associated to, in the above sense. \begin{uprop} Every $(\infty,1)$-functor $f : D \to C$ is associated to some Cartesian fibration $p : K \to \Delta[1]$, and this is unique up to equivalence. \end{uprop} \begin{proof} This is [[Higher Topos Theory|HTT, prop 5.2.1.3]]. The idea is that we obtain $K$ from first forming the cylinder $D \times \Delta[1]$ and the identifying the left boundary of that with $C$, using $f$. Formally this means that we form the [[pushout]] \begin{displaymath} N := (D^\sharp \times \Delta[1]^#) \coprod_{D^\sharp \times \{0\}^#} C^\sharp \end{displaymath} in $sSet^+$, where $C^\sharp$ and $D^\sharp$ are $C$ and $D$ with precisely the [[equivalence in a quasi-category|equivalences]] marked. This comes canonically with a morphism \begin{displaymath} N \to \Delta[1] \end{displaymath} and does have the property that $N_0 = C$, $N_1 = D$ and that $f$ is associated to it in that the restriction of the canonical morphism $D \times \Delta[1] \to K$ to the 0-fiber is $f$. But it may fail to be a Cartesian fibration. To fix this, use the [[small object argument]] to factor $N \to \Delta[1]$ as \begin{displaymath} N \to K \to \Delta[1]^# \,, \end{displaymath} where the first morphism is \href{http://ncatlab.org/nlab/show/model+structure+for+Cartesian+fibrations#MarkedAnodyne}{marked anodyne} and the second has the [[right lifting property]] with respect to all marked anodyne morphisms and is hence (since every morphism in $\Delta[1]^#$ is marked) a Cartesian fibration. It then remains to check that $f$ is still associated to this $K \to \Delta[1]^#$. This is done by observing that in the small object argument $K$ is built succesively from [[pushout]]s of the form \begin{displaymath} \itexarray{ A &\to& N_\alpha \\ \downarrow && \downarrow & \searrow \\ B &\to& N_{\alpha+1} &\to& \Delta[1] } \,, \end{displaymath} where the morphisms on the left are the generators of marked anodyne morphisms (see \href{http://ncatlab.org/nlab/show/model+structure+for+Cartesian+fibrations#MarkedAnodyne}{here}). from this one checks that if the fiber $N_\alpha \times_{\Delta[1]} \{0\}$ is equivalent to $C$, then so is $N_{\alpha +1} \times_{\Delta[1]} \{0\}$ and similarly for $D$. By induction, it follows that $f$ is indeed associated to $K \to \Delta[1]$. To see that the $K$ obtained this way is unique up to equivalence, consider\ldots{} \end{proof} \hypertarget{CartOverSimplex}{}\subsubsection*{{Cartesian fibrations over simplices}}\label{CartOverSimplex} \ldots{} for the moment see [[Higher Topos Theory|HTT, section 3.2.2]] \ldots{} \hypertarget{the_universal_cartesian_fibration}{}\subsubsection*{{The universal Cartesian fibration}}\label{the_universal_cartesian_fibration} for the moment see \begin{itemize}% \item [[universal fibration of (∞,1)-categories]]. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[operadic (∞,1)-Grothendieck construction]] \item [[Grothendieck construction for model categories]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The construction for $\infty$-groupoid fibrations i.e. left/right fibrations is the content of section 2.2.1, that of quasi-category fibrations i.e. Cartesian fibrations that \begin{itemize}% \item [[Jacob Lurie]], section 3.2 \emph{[[Higher Topos Theory]]} \end{itemize} More on model-category theoretic construction of the $\infty$-Grothendieck construction with values in $\infty$-groupoids is in \begin{itemize}% \item [[Gijs Heuts]], [[Ieke Moerdijk]], \emph{Left fibrations and homotopy colimits} (\href{http://arxiv.org/abs/1308.0704}{arXiv:1308.0704}) \end{itemize} Discussion in terms of [[lax (infinity,1)-colimits]] is in \begin{itemize}% \item [[David Gepner]], [[Rune Haugseng]], [[Thomas Nikolaus]], \emph{Lax colimits and free fibrations in $\infty$-categories} (\href{http://arxiv.org/abs/1501.02161}{arXiv:1501.02161}) \end{itemize} [[!redirects (∞,1)-Grothendieck construction]] \end{document}