\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{(infinity,1)-bimodule} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{category_of_bimodules_and_intertwiners}{$(\infty,1)$-Category of $(\infty,1)$-Bimodules and intertwiners}\dotfill \pageref*{category_of_bimodules_and_intertwiners} \linebreak \noindent\hyperlink{TensorProductOfBimodules}{Tensor products of $(\infty,1)$-Bimodules}\dotfill \pageref*{TensorProductOfBimodules} \linebreak \noindent\hyperlink{the_category_of_algebras_and_bimodules}{The $(\infty,2)$-Category of $(\infty,1)$-algebras and -bimodules}\dotfill \pageref*{the_category_of_algebras_and_bimodules} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{category_of_bimodules_and_intertwiners}{}\subsubsection*{{$(\infty,1)$-Category of $(\infty,1)$-Bimodules and intertwiners}}\label{category_of_bimodules_and_intertwiners} Write $BMod^\otimes$ for the [[(∞,1)-category of operators]] of the [[(∞,1)-operad]] [[operad for bimodules]]. Write \begin{displaymath} \iota_{\pm} \colon Assoc \to BMod \end{displaymath} for the two canonical inclusions of the [[associative operad]] (as discussed at \emph{\hyperlink{RelationToTheAssociativeOperad}{operad for bimodules - relation to the associative operad}}). \begin{defn} \label{NotationForWeaklyBiEnrichedInfinityCategory}\hypertarget{NotationForWeaklyBiEnrichedInfinityCategory}{} For $p \colon \mathcal{C}^\otimes \to BMod^\otimes$ a [[fibration of (∞,1)-operads]], write \begin{displaymath} \mathcal{C}^\otimes_{\pm} \coloneqq \mathcal{C}^\otimes \underset{BMod^\otimes}{\times}^\pm Assoc^\otimes \end{displaymath} for the two [[fiber products]] of $p$ with the inclusions $\iota_\pm$. The canonical [[projection]] maps \begin{displaymath} \mathcal{C}^\otimes_{\pm} \to Assoc^\otimes \end{displaymath} exhibit these as two [[planar (∞,1)-operads]]. Finally write \begin{displaymath} \mathcal{C} \coloneqq \mathcal{C}^\otimes \underset{BMod^\otimes}{\times} \{\mathfrak{n}\} \end{displaymath} for the [[(∞,1)-category]] over the object labeled $\mathfrak{n}$. \end{defn} (\hyperlink{Lurie}{Lurie, notation 4.3.1.11}). \begin{remark} \label{}\hypertarget{}{} This exhibits $\mathcal{C}$ as equipped with [[weak tensoring]] over $\mathcal{C}_-$ and reverse weak tensoring over $\mathcal{C}_+$. \end{remark} The most familiar special case of these definitions to keep in mind is the following. \begin{remark} \label{MonoidalCategoryAsBitensoredOverItself}\hypertarget{MonoidalCategoryAsBitensoredOverItself}{} For $\mathcal{C}^\otimes \to Assoc^\otimes$ a [[coCartesian fibration of (∞,1)-operads]], hence exhibiting $\mathcal{C}^\otimes$ as a [[monoidal (∞,1)-category]], [[pullback]] along the canonical map $\phi \colon BMod^\otimes \to Assoc^\otimes$ gives a fibration \begin{displaymath} \phi^* \mathcal{C}^\otimes \to BMod^\otimes \end{displaymath} as in def. \ref{NotationForWeaklyBiEnrichedInfinityCategory} above. In the terminology there this exhibts $\mathcal{C}$ as weakly enriched (weakly [[tensoring|tensored]]) over itself from the left and from the right. This is the special case for which bimodules are traditionally considered. \end{remark} (\hyperlink{Lurie}{Lurie, example 4.3.1.15}) \begin{defn} \label{}\hypertarget{}{} For $\mathcal{C}^\otimes \to BMod^\otimes$ a [[fibration of (∞,1)-operads]] we say that the corresponding [[(∞,1)-category]] of [[(∞,1)-algebras over an (∞,1)-operad]] \begin{displaymath} BMod(\mathcal{C}) \coloneqq Alg_{/BMod}(\mathcal{C}) \end{displaymath} is the \textbf{$(\infty,1)$-category of $(\infty,1)$-bimodules} in $\mathcal{C}$. Composition with the two inclusions $\iota_{1,2}\colon Assoc BMod$ of the [[associative operad]] yields a [[fibration]] in the [[model structure for quasi-categories]] $BMod(\mathcal{C}) \to Alg(\mathcal{C}_-)\times Alg(\mathcal{C}_+)$. Then for $A_- \in Alg_{\mathcal{C}_-}$ and $A_+ \in Alg_{\mathcal{C}_+}$ two algebras the [[fiber product]] \begin{displaymath} {}_A BMod_{B}(\mathcal{C}) \coloneqq \{A\} \underset{Alg(\mathcal{C}_-)}{\times} BMod(\mathcal{C}) \underset{Alg(\mathcal{C}_-)}{\times} \{B\} \end{displaymath} we call the \textbf{$(\infty,1)$-category of $A$-$B$-bimodules}. \end{defn} (\hyperlink{Lurie}{Lurie, def. 4.3.1.12}) \begin{example} \label{}\hypertarget{}{} For the special case of remark \ref{MonoidalCategoryAsBitensoredOverItself} where the bitensored structure on $\mathcal{C}$ is induced from a monoidal structure $\mathcal{C}^\otimes \to Asoc^\otimes$, we have by the [[universal property]] of the [[pullback]] that \begin{displaymath} BMod(\mathcal{C}) \simeq {Alg_{BMod}}_{/Assoc}(\mathcal{C}) \simeq \left\{ \itexarray{ && \mathcal{C} \\ &{}^{\mathllap{(A,B,N)}}\nearrow& \downarrow \\ BMod^\otimes &\to& Assoc^\otimes } \right\} \end{displaymath} \end{example} \begin{remark} \label{}\hypertarget{}{} Let $\mathcal{C}$ be a [[1-category]], for simplicity. Then a [[morphism]] \begin{displaymath} (A_1,B_1,N_1) \to $(A_2,B_2,N_2)$ \end{displaymath} in $BMod(\mathcal{C})$ is a pair $\phi_1 \colon A_1 \to A_1$, $\rho \colon B_1 \to B_2$ of algebra homomorphisms and a morphism $\kappa \colon N_1 \to N_2$ which is ``linear in both $A$ and $B$'' or ``is an [[intertwiner]]'' with respect to $\phi$ and $\rho$ in that for all $a \in A$, $b \in B$ and $n \in N$ we have \begin{displaymath} \kappa(a \cdot n \cdot b) = \phi(a) \cdot \kappa(n) \,. \end{displaymath} It is natural to depict this by the square diagram \begin{displaymath} \itexarray{ A_1 &\stackrel{N_1}{\to}& B_1 \\ {}^{\mathllap{\phi}}\downarrow & \Downarrow^{\kappa} & \downarrow^{\mathrlap{\rho}} \\ A_2 &\underset{N_2}{\to}& B_2 } \,. \end{displaymath} This notation is naturally suggestive of the existence of the further [[horizontal composition]] by [[tensor product of (∞,1)-modules]], which we come to \hyperlink{TensorProductOfBimodules}{below}. On the other hand, a morphism $N_1 \to N_2$ in ${}_A BMod(\mathcal{C})_B$ is given by the special case of the above for $\phi = id$ and $\rho = id$. \end{remark} \hypertarget{TensorProductOfBimodules}{}\subsubsection*{{Tensor products of $(\infty,1)$-Bimodules}}\label{TensorProductOfBimodules} \begin{defn} \label{NotationForTensS}\hypertarget{NotationForTensS}{} Write $Tens^\otimes$ for the [[generalized (∞,1)-operad]] discussed at \emph{[[tensor product of ∞-modules]]}. For $S \to \Delta^{op}$ an [[(∞,1)-functor]] (given as a map of simplicial sets from a [[quasi-category]] $S$ to the [[nerve]] of the [[simplex category]]), write \begin{displaymath} Tens^\otimes_{S} \coloneqq Tens^\otimes \underset{\Delta^{op}}{\times} S \end{displaymath} for the [[fiber product]] in [[sSet]]. Moreover, for $\mathcal{C}^\otimes \to Tens^\otimes_S$ a [[fibration]] in the [[model structure for quasi-categories]] which exhibits $\mathcal{C}^\otimes$ as an $S$-[[family of (∞,1)-operads]], write \begin{displaymath} Alg_S(\mathcal{C}) \hookrightarrow Fun_{Tens^\otimes_S}(Step_S, \mathcal{C}^\otimes) \end{displaymath} for the full [[sub-(∞,1)-category]] on those [[(∞,1)-functors]] which send inert morphisms to inert morphisms. \end{defn} (\hyperlink{Lurie}{Lurie, notation 4.3.4.15}) \hypertarget{the_category_of_algebras_and_bimodules}{}\subsubsection*{{The $(\infty,2)$-Category of $(\infty,1)$-algebras and -bimodules}}\label{the_category_of_algebras_and_bimodules} We discuss the generalization of the notion of bimodules to [[homotopy theory]], hence the generalization from [[category theory]] to [[(∞,1)-category theory]]. (\hyperlink{Lurie}{Lurie, section 4.3}). Let $\mathcal{C}$ be [[monoidal (∞,1)-category]] such that \begin{enumerate}% \item it admits [[geometric realization]] of [[simplicial objects in an (∞,1)-category]] (hence a [[left adjoint|left]] [[adjoint (∞,1)-functor]] ${\vert-\vert} \colon \mathcal{C}^{\Delta^{op}} \to \mathcal{C}$ to the constant simplicial object functor), true notably when $\mathcal{C}$ is a [[presentable (∞,1)-category]]; \item the [[tensor product]] $\otimes \colon \mathcal{C}\times \mathcal{C} \to \mathcal{C}$ preserves this geometric realization separately in each argument. \end{enumerate} Then there is an [[(∞,2)-category]] $Mod(\mathcal{C})$ which given as an [[(∞,1)-category object]] internal to [[(∞,1)Cat]] has \begin{itemize}% \item $(\infty,1)$-category of objects \begin{displaymath} Mod(\mathcal{C})_{[0]} \simeq Alg(\mathcal{C}) \end{displaymath} the [[A-∞ algebras]] and [[∞-algebra]] [[homomorphisms]] in $\mathcal{C}$; \item $(\infty,1)$-category of morphisms \begin{displaymath} Mod(\mathcal{C})_{[1]} \simeq BMod(\mathcal{C}) \end{displaymath} the $\infty$-bimodules and bimodule homomorphisms ([[intertwiners]]) in $\mathcal{C}$ \end{itemize} This is (\hyperlink{Lurie}{Lurie, def. 4.3.6.10, remark 4.3.6.11}). Morover, the [[horizontal composition]] of bimodules in this [[(∞,2)-category]] is indeed the relative [[tensor product of ∞-modules]] \begin{displaymath} \circ_{A,B,C} = (-) \otimes_B (-) \;\colon\; {}_A Mod_{B} \times {}_{B}Mod_C \to {}_A Mod_C \,. \end{displaymath} This is (\hyperlink{Lurie}{Lurie, lemma 4.3.6.9 (3)}). Here are some steps in the construction: The \textbf{idea} of the following constructions is this: we start with a [[generalized (∞,1)-operad]] $Tens^\otimes \to FinSet_* \times \Delta^{op}$ which is such that the [[(∞,1)-algebras over an (∞,1)-operad]] over its fiber over $[k] \in \Delta^{op}$ is equivalently the collection of $(k+1)$-tuples of [[A-∞ algebras]] in $\mathcal{C}$ together with a string of $k$ $\infty$-bimodules between them. Then we turn that into a [[simplicial object in an (∞,1)-category|simplicial object]] in [[(∞,1)Cat]] \begin{displaymath} Mod(\mathcal{C}) \in ((\infty,1)Cat)^{\Delta^{op}} \,. \end{displaymath} This turns out to be an [[internal (∞,1)-category]] object in [[(∞,1)Cat]], hence an [[(∞,2)-category]] whose object of objects is the category $Alg(\mathcal{C})$ of [[A-∞ algebras]] and [[homomorphisms]] in $\mathcal{C}$ between them, and whose object of morphisms is the category $BMod(\mathcal{C})$ of $\infty$-bimodules and [[intertwiners]]. \begin{defn} \label{}\hypertarget{}{} Define $Mod(\mathcal{C}) \to \Delta^{op}$ as the map of [[simplicial sets]] with the [[universal property]] that for every other map of simplicial set $K \to \Delta^{op}$ there is a canonical bijection \begin{displaymath} Hom_{sSet/\Delta^{op}}(K, Mod(\mathcal{C})) \simeq Alg_{Tens_K / Assoc}( \mathcal{C} ) \,, \end{displaymath} where \begin{itemize}% \item on the left we have the hom-simplicial set in the [[slice category]] \item on the right we have the [[(∞,1)-category]] of [[(∞,1)-algebras over an (∞,1)-operad]] given by lifts $\mathcal{A}$ in \begin{displaymath} \itexarray{ && \mathcal{C}^\otimes \\ &{}^{\mathcal{A}}\nearrow& \downarrow \\ Tens_K &\to& Assoc } \,. \end{displaymath} \end{itemize} \end{defn} This is (\hyperlink{Lurie}{Lurie, cor. 4.3.6.2}) specified to the case of (\hyperlink{Lurie}{Lurie, lemma 4.3.6.9}). Also (\hyperlink{Lurie}{Lurie, def. 4.3.4.19}) \hypertarget{references}{}\subsection*{{References}}\label{references} The general theory in terms of [[higher algebra]] of [[(∞,1)-operads]] is discussed in section 4.3 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Algebra]]} \end{itemize} Specifically the homotopy theory of [[A-infinity bimodules]] is discussed in \begin{itemize}% \item Volodymyr Lyubashenko, Oleksandr Manzyuk, \emph{A-infinity-bimodules and Serre A-infinity-functors} (\href{http://arxiv.org/abs/math/0701165}{arXiv:math/0701165}) \end{itemize} and section 5.4.1 of \begin{itemize}% \item [[Boris Tsygan]], \emph{Noncommutative calculus and operads} in Guillermo Cortinas (ed.) \emph{Topics in Noncommutative geometry}, Clay Mathematics Proceedings volume 16 \end{itemize} The generalization to [[(infinity,n)-modules]] is in \begin{itemize}% \item [[Rune Haugseng]], \emph{The higher Morita category of $E_n$-algebras} (\href{http://arxiv.org/abs/1412.8459}{arXiv:1412.8459}) \end{itemize} [[!redirects (infinity,1)-bimodules]] [[!redirects ∞-bimodule]] [[!redirects ∞-bimodules]] [[!redirects (∞,1)-bimodule]] [[!redirects (∞,1)-bimodules]] [[!redirects (∞,1)-category of (∞,1)-bimodules]] [[!redirects (infinity,1)-category of (∞,1)-bimodules]] [[!redirects (∞,1)-categories of (∞,1)-bimodules]] [[!redirects (infinity,1)-categories of (∞,1)-bimodules]] [[!redirects infinity-bimodule]] [[!redirects infinity-bimodules]] \end{document}