\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{(infinity,1)-categorical hom-space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{mapping_space}{}\paragraph*{{Mapping space}}\label{mapping_space} [[!include mapping space - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{presentations}{Presentations}\dotfill \pageref*{presentations} \linebreak \noindent\hyperlink{ForACategoryWithWeakEquivalences}{For a category with weak equivalences}\dotfill \pageref*{ForACategoryWithWeakEquivalences} \linebreak \noindent\hyperlink{Framings}{For a model category}\dotfill \pageref*{Framings} \linebreak \noindent\hyperlink{EnrichedHomsCofToFib}{For a simplicial model category}\dotfill \pageref*{EnrichedHomsCofToFib} \linebreak \noindent\hyperlink{comparison}{Comparison}\dotfill \pageref*{comparison} \linebreak \noindent\hyperlink{InACategoryOfFibrantObjects}{In a category of fibrant objects}\dotfill \pageref*{InACategoryOfFibrantObjects} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{SpacesOfEquivalences}{Hom-spaces of equivalences}\dotfill \pageref*{SpacesOfEquivalences} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Where an ordinary [[category]] has a [[hom-set]], an [[(∞,1)-category]] has an [[∞-groupoid]] of morphisms between any two objects, a \emph{hom-space}. There are several ways to \emph{present} an [[(∞,1)-category]] $\mathbf{C}$ by an ordinary [[category]] $C$ equipped with some extra structure: for instance $C$ may be a [[category with weak equivalences]] or a [[model category]] or even a [[simplicial model category]]. In all of these presentations, given two objects $X, Y \in C$, there is a way to construct a [[simplicial sets]] $\mathbb{R}\mathbf{C}(X,Y)$ that presents the hom-[[∞-groupoid]] $\mathbf{C}(X,Y)$. This simplicial set -- or rather its [[homotopy type]] -- is called the \emph{derived hom space} or \emph{homotopy function complex} and denoted $\mathbf{R}Hom(X,Y)$ or similarly. \hypertarget{presentations}{}\subsection*{{Presentations}}\label{presentations} There are many ways to present an [[(∞,1)-category]] by [[category theory|category theoretic data]], and for each of these there are corresponding tools for explicitly computing the derived hom spaces. The most basic data is that of a [[category with weak equivalences]]. Here the derived hom spaces can be constructed in terms of zig-zags of morphisms by a process called \emph{[[simplicial localization]]}. This we discuss below in \emph{\hyperlink{ForACategoryWithWeakEquivalences}{For a category with weak equivalences}}. Particularly useful extra structure on a [[category with weak equivalences]] that helps with computing the derived hom spaces is the structure of a \emph{[[model category]]}. Using this one can construct simplicial resolutions of objects -- called \emph{framings} -- that generalize [[cylinder objects]] and [[path objects]], and then construct the derived hom spaces in terms of direct morphisms between these resolutions. This we discuss below in \emph{\hyperlink{Framings}{For a model category}}. Still a bit more helpful structure on top of a bare model category is that of a [[simplicial model category]]. Here, after a choice of cofibrant and fibrant resolutions of opjects, the derived hom spaces are given already by the [[sSet]]-[[hom objects]]. This we discuss below in \emph{\hyperlink{EnrichedHomsCofToFib}{For a simplicial model category}}. \hypertarget{ForACategoryWithWeakEquivalences}{}\subsubsection*{{For a category with weak equivalences}}\label{ForACategoryWithWeakEquivalences} Let $(C,W \subset Mor(C))$ be a [[category with weak equivalences]]. \begin{defn} \label{ZigZagCategories}\hypertarget{ZigZagCategories}{} Fix $n \in \mathbb{N}$. For $X,Y \in Obj(C)$, define a category $wMor_C^n(X,Y)$ \begin{itemize}% \item whose objects are [[zig-zag]]s of morphisms in $C$ of length $n$ \begin{displaymath} X = X_0 \leftarrow X_1 \to X_2 \leftarrow \cdots \to X_{n-1} \leftarrow X_n = Y \end{displaymath} such that each morphism going to the left, $X_{2k}\leftarrow X_{2k +1}$, is a [[weak equivalence]], an element in $W$; \item morphisms between such objects $(X,X_i,Y) \to (X',X'_i,Y')$ are collections of weak equivalences $(X_i \to X'_i)$ for all $0 \lt i \lt n$ such that all triangles and squares commute. \end{itemize} \end{defn} \begin{defn} \label{HammockLocalization}\hypertarget{HammockLocalization}{} Write $N(wMor_C^n(X,Y))$ for the [[nerve]] of this category, a [[simplicial set]]. The \emph{[[hammock localization]]} $L_W^H C$ of $C$ is the [[simplicially enriched category]] with objects those of $C$ and [[hom-objects]] given by the [[colimit]] over the length of these hammock hom-categories \begin{displaymath} L^H C(X,Y) := \lim_{\to_n} N(wMor_C^n(X,Y)) \,. \end{displaymath} The [[Kan fibrant replacement]] of this simplicial set is the derived hom-space between $X$ and $Y$ of the $(\infty,1)$-category modeled by $(C,W)$. \end{defn} \hypertarget{Framings}{}\subsubsection*{{For a model category}}\label{Framings} The derived hom spaces of a model category $C$ may always be computed in terms of simplicial resolutions with respect to the [[Reedy model structure]] $[\Delta^{op}, C]_{Reedy}$. These resolutions are often called \emph{framings} (\hyperlink{Hovey}{Hovey}). These constructions are originally due to (\hyperlink{DHK}{Dwyer-Hirschhorn-Kan}). Let $C$ be any [[model category]]. \begin{prop} \label{}\hypertarget{}{} There is an [[adjoint triple]] \begin{displaymath} (const \dashv ev_0 \dashv (-)^{\times^\bullet}) : C \stackrel{\overset{const}{\longrightarrow}}{\stackrel{\overset{ev_0}{\longleftarrow}}{\underset{(-)^{\times^\bullet}}{\longrightarrow}}} \,, [\Delta^{op}, C] \,, \end{displaymath} where \begin{enumerate}% \item $const X : [n] \mapsto X$; \item $ev_0 X_\bullet = X_0$; \item $X^{\times^\bullet} : [n] \mapsto X^{\times^{n+1}}$. \end{enumerate} \end{prop} \begin{remark} \label{CoDiscreteIsReedyFibrant}\hypertarget{CoDiscreteIsReedyFibrant}{} For $X \in C$ fibrant, $X^{\times^\bullet}$ is fibrant in the [[Reedy model structure]] $[\Delta^{op}, C]_{Reedy}$. \end{remark} \begin{proof} The matching morphisms are in fact [[isomorphisms]]. \end{proof} \begin{defn} \label{}\hypertarget{}{} Let $C$ be a model category. \begin{enumerate}% \item For $X \in C$ any object, a \emph{simplicial frame} on $X$ is a factorization of $const X \to X^{\times^\bullet}$ into a weak equivalence followed by a fibration in the [[Reedy model structure]] $[\Delta^{op}, C]_{Reedy}$. \item A \emph{right framing} in $C$ is a functor $(-)_\bullet : C \to [\Delta^{op}, C]$ with a [[natural isomorphism]] $(X)_0 \simeq X$ such that $X_\bullet$ is a simplicial frame on $X$. \end{enumerate} Dually for \emph{cosimplicial frames}. \end{defn} This appears as (\hyperlink{Hovey}{Hovey, def. 5.2.7}). \begin{remark} \label{}\hypertarget{}{} By remark \ref{CoDiscreteIsReedyFibrant} a simplicial frame $X_\bullet$ in the above is in particular fibrant in $[\Delta^{op}, C]_{Reedy}$. \end{remark} \begin{prop} \label{SimplicialFunctionComplexes}\hypertarget{SimplicialFunctionComplexes}{} For $X \in C$ cofibrant and $A \in C$ fibrant, there are weak equivalences in $sSet_{Quillen}$ \begin{displaymath} Hom_C(X^\bullet, A) \stackrel{\simeq}{\to} diag Hom_C(X^\bullet, A_\bullet) \stackrel{\simeq}{\leftarrow} Hom_C(X, A_\bullet) \,, \end{displaymath} (where in the middle we have the diagonal of the [[bisimplicial set]] $Hom(X^\bullet, A_\bullet)$). \end{prop} This appears as (\hyperlink{Hovey}{Hovey, prop. 5.4.7}). Either of these simplicial sets is a model for the derived hom-space $\mathbb{R}Hom(X,A)$. \begin{remark} \label{}\hypertarget{}{} By developing these constructions further, one obtains a canonical [[simplicial model category]]-resolution of (left proper and combinatorial) model categories $C$, such that the simplicial resolutions given by framings are just the cofibrant$\to$fibrant $sSet$-hom objects as discussed \hyperlink{EnrichedHomsCofToFib}{below}. This is discussed at \emph{\href{http://ncatlab.org/nlab/show/simplicial+model+category#SimpEquivMods}{Simplicial Quillen equivalent models}}. \end{remark} \begin{prop} \label{}\hypertarget{}{} Let $C$ be a model category, let $\mathrm{c}_\mathrm{w} C$ be the full subcategory of $[\Delta, C]$ spanned by the cosimplicial objects whose coface and codegeneracy operators are weak equivalences, and let $\mathrm{s}_\mathrm{w} C$ be the full subcategory of $[\Delta^{op}, C]$ spanned by the simplicial objects whose face and degeneracy operators are weak equivalences. \begin{enumerate}% \item $const : C \to \mathrm{c}_\mathrm{w} C$ is the right half of an adjoint homotopical equivalence of [[homotopical category|homotopical categories]], and $const : C \to \mathrm{s}_\mathrm{w} C$ is the left half of an adjoint homotopical equivalence of homotopical categories. \item The functor $\operatorname{diag} Hom_C : (\mathrm{c}_\mathrm{w} C)^{op} \times \mathrm{s}_\mathrm{w} C \to sSet$ admits a right [[derived functor]]. \item The induced functor $(\operatorname{Ho} C)^{op} \times \operatorname{Ho} C \to \operatorname{Ho} sSet$ is the derived hom-space functor. \end{enumerate} \end{prop} \hypertarget{EnrichedHomsCofToFib}{}\subsubsection*{{For a simplicial model category}}\label{EnrichedHomsCofToFib} We describe here in more detail properties of [[derived hom-functors]] (see there for more) in a [[simplicial model category]]. The crucial axiom used for this is the axiom of an [[enriched model category]] $C$ which says that \begin{itemize}% \item the [[copower|tensor operation]] \begin{displaymath} \cdot : C \times SSet \to C \end{displaymath} is a [[Quillen bifunctor]]; \item or equivalently that for $X \to Y$ a cofibration and $A \to B$ a fibration the induced morphism \begin{displaymath} C(Y, A) \to C(X,A) \times_{C(X,B)} C(Y,B) \end{displaymath} is a fibration, which is acyclic if either $X \to Y$ or $A \to B$ is. \end{itemize} First of all the first statement directly implies that for $\emptyset \in C$ the [[initial object]] and $A \in C$ any object, the simplicial set $C(\emptyset,A) = {*}$ is the terminal simplicial set (see also \href{powered+and+copowered+category#InTensoredCotensoredCategoryInitialObjectIsEnrichedInitial}{this Prop.}): because for any simplicial set $S$ \begin{displaymath} \begin{aligned} SSet(S,C(\emptyset, A)) & = Hom_C(\emptyset \cdot S, A) \\ & = Hom_C(colim_{\emptyset} \cdot S, A) \\ & = Hom_C(\emptyset, A) \\ &= {*} \end{aligned} \,, \end{displaymath} where we use that the [[copower|tensor]] [[Quillen bifunctor]] is required to respect [[colimit]]s and that the empty colimit is the [[initial object]]. (All equality signs here denote [[isomorphisms]], to distinguish them from weak equivalences.) Similarly one has for all $X$ that $C(X,{*}) = {*}$. Using this, the second equivalent form of the enrichment axiom has as a special case the following statement. \begin{lemma} \label{}\hypertarget{}{} In a [[simplicial model category]] $C$, for $X \in C$ cofibrant and $A \in C$ fibrant, the [[simplicial set]] $C(X,A)$ is a [[Kan complex]]. \end{lemma} \begin{proof} We apply the [[enriched model category]] axiom to the cofibration $\emptyset \to X$ and the fibration $A \to {*}$ to obtain a fibration \begin{displaymath} C(X,A) \to C(\emptyset, A) \times_{C(\emptyset,{*})} C(X,{*}) \,. \end{displaymath} The right hand is the [[pullback]] of the terminal simplicial set ${*} = \Delta^0$ to itself, hence is itself the point. So we have a fibration $C(X,A) \to {*}$ and $C(X,A)$ is a fibrant object in the standard [[model structure on simplicial sets]], hence a [[Kan complex]]. . \end{proof} \begin{lemma} \label{}\hypertarget{}{} In a [[simplicial model category]] $C$, for $X \in C$ cofibrant and $f : A \to B$ a fibration, the morphism of [[simplicial set]]s $C(X,f) : C(X,A) \to C(X,B)$ is a [[Kan fibration]] that is a [[weak homotopy equivalence]] if $f$ is acyclic. Dually, for $i : X \to Y$ a cofibration and $A$ fibrant, the morphism $C(i,A) : C(X,A) \to C(Y,A)$ is a cofibration of simplicial sets. \end{lemma} \begin{proof} This is as before. Explicity, consider the first case, the second one is the formal dual of that: We enter the enrichment axiom with the morphisms $\emptyset \to X$ and $A \to B$ and find for the required [[pullback]] that \begin{displaymath} C(\emptyset,A) \times_{C(\emptyset, B)} C(X,B) = {*} \times_{*} C(X,B) = C(X,B) \end{displaymath} and hence that $C(X,A) \to C(X,B)$ is, indeed, a fibration, which is acyclic if $A \to B$ is. \end{proof} \begin{proposition} \label{}\hypertarget{}{} Let $C$ be a [[simplicial model category]]. Then for $X$ a cofibant object and \begin{displaymath} f : A \stackrel{\simeq}{\to} B \end{displaymath} a weak equivalence between fibrant objects, the [[enriched functor|enriched]] [[hom-object|hom-functor]] \begin{displaymath} C(X,f) : C(X,A) \to C(X,B) \end{displaymath} is a [[weak homotopy equivalence]] of [[Kan complex]]es. Similarly, for $A$ a fibrant object and $j : X \stackrel{\simeq}{\to} Y$ a weak equivalence between cofibrant objects, the morphism \begin{displaymath} C(j,A) : C(X,A) \to C(Y,A) \end{displaymath} is a [[weak homotopy equivalence]] of [[Kan complex]]es. \end{proposition} \begin{proof} The second case is formally dual to the first, so we restrict attention to the first one. By the above, the axioms of an [[enriched model category]] ensure that the above statement is true when $f$ is in addition a fibration. So we reduce the situation to that case. This is possible because both $A$ and $B$ are assumed to be fibrant. This allows to apply the \emph{factorization lemma} that is described in great detail at [[category of fibrant objects]]. By this lemma, for every morphism $f : A \to B$ between fibrant objects there is a commutative diagram \begin{displaymath} \itexarray{ && \mathbf{E}_f B \\ & {}^{\mathllap{\in fib \cap W}}\swarrow && \searrow^{\mathrlap{\in fib}} \\ A &&\stackrel{\simeq}{\to}&& B } \end{displaymath} Since $f$ is assumed a weak equivalence it follows by [[category with weak equivalences|2-out-of-3]] that $\mathbf{E}_f B$ is also a weak equivalence. Therefore by the above properties of simpliciall enriched categories we obtain a [[span]] of acyclic fibrations of [[Kan complex]]es \begin{displaymath} C(X,A) \stackrel{\simeq}{\leftarrow} C(X, \mathbf{E}_f B) \stackrel{\simeq}{\to} C(X,B) \,. \end{displaymath} By the [[Whitehead theorem]] every weak equivalence of Kan complexes is a [[homotopy equivalence]], hence there is a weak equivalence \begin{displaymath} C(X,A) \stackrel{\simeq}{\to} C(X,\mathbf{E}_f B) \stackrel{\simeq}{\to} C(X,B) \end{displaymath} that is homotopic to our $C(X,f)$. Therefore this is also a weak equivalence. \end{proof} \hypertarget{comparison}{}\subsubsection*{{Comparison}}\label{comparison} Let $C$ be a [[model category]]. We discuss how its simplicial function complexes from prop. \ref{SimplicialFunctionComplexes} are related to the simplicial localization from def. \ref{ZigZagCategories} and def. \ref{HammockLocalization}. Suppose now that $Q : C \to C$ is a [[cofibrant replacement functor]] and $R : C \to C$ a [[fibrant replacement functor]], $\Gamma^\bullet : C \to (cC)_c$ a [[cosimplicial resolution functor]] and $\Lambda_\bullet : C \to (sC)_f$ a [[simplicial resolution functor]] in the [[model category]] $C$. \begin{theorem} \label{DKTheorem}\hypertarget{DKTheorem}{} \textbf{(Dwyer--Kan)} There are natural weak equivalences between the following equivalent realizations of this [[SSet]] [[hom-object]]: \begin{displaymath} \itexarray{ Mor_C(\Gamma^\bullet X, R Y) &\stackrel{\simeq}{\to}& diag Mor_C(\Gamma^\bullet X, \Lambda_\bullet Y) &\stackrel{\simeq}{\leftarrow}& Mor_C(Q X, \Lambda_\bullet Y) \\ && \uparrow^\simeq \\ && hocolim_{p,q \in \Delta^{op} \times \Delta^{op}} Mor_C(\Gamma^p X, \Lambda_q Y) \\ &&\downarrow^\simeq \\ &&N wMor_C^3(X,Y) \\ &&\downarrow^\simeq \\ &&Mor_{L^H C}(X,Y) } \,. \end{displaymath} \end{theorem} The top row weak equivalences are those of prop. \ref{SimplicialFunctionComplexes} \hypertarget{InACategoryOfFibrantObjects}{}\subsubsection*{{In a category of fibrant objects}}\label{InACategoryOfFibrantObjects} There is also an explicit simplicial construction of the derived hom spaces for a homotopical category that is equipped with the structure of a [[category of fibrant objects]]. This is described in (\hyperlink{Cisinski10}{Cisinksi 10}) and (\hyperlink{NSS12}{Nikolaus-Schreiber-Stevenson 12, section 3.6.2}). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{SpacesOfEquivalences}{}\subsubsection*{{Hom-spaces of equivalences}}\label{SpacesOfEquivalences} \begin{theorem} \label{DKTheorem}\hypertarget{DKTheorem}{} For $C$ a [[simplicial model category]] and $X$ an object, the [[delooping]] of the [[automorphism ∞-group]] \begin{displaymath} Aut_W(X) \subset \mathbb{R}Hom(X,X) \end{displaymath} has the [[homotopy type]] of the component on $X$ of the [[nerve]] $N(C_W)$ of the [[subcategory]] of weak equivalences: \begin{displaymath} \mathbf{B} Aut_W(X) \simeq N(C_W)_X \,. \end{displaymath} The equivalence is given by a finite sequence of [[zig-zags]] and is natural with respect to [[sSet]]-[[enriched functors]] of simplicial model categories that preserve weak equivalences and send a fibrant cofibrant model for $X$ again to a fibrant cofibrant object. \end{theorem} This is \hyperlink{DK84}{Dwyer-Kan 84, 2.3, 2.4}. \begin{cor} \label{}\hypertarget{}{} For $C$ a model category, the simplicial set $N(C_W)$ is a model for the [[core]] of the [[(∞,1)-category]] determined by $C$. \end{cor} \begin{proof} That core, like every [[∞-groupoid]] is equivalent to the disjoint union over its connected components of the deloopings of the automorphism $\infty$-groups of any representatives in each connected component. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[hom-object]] \item [[hom-set]], [[hom-functor]] \item [[hom-category]] \item [[hom-space]], \textbf{derived hom-space}, [[cocycle space]] \end{itemize} [[!include homotopy-homology-cohomology]] \hypertarget{references}{}\subsection*{{References}}\label{references} For some original references by [[William Dwyer]] and [[Dan Kan]] see [[simplicial localization]]. For instance \begin{itemize}% \item [[William Dwyer]], [[Dan Kan]], \emph{A classication theorem for diagrams of simplicial sets}, Topology 23 (1984), 139-155. \end{itemize} The theory of \emph{framings} is due to \begin{itemize}% \item [[William Dwyer]], [[Philip Hirschhorn]], [[Dan Kan]], \emph{Model categories and general abstract homotopy theory}, (1997) (\href{http://www.mimuw.edu.pl/~jacho/literatura/ModelCategory/DHK_ModelCateogories1.pdf}{pdf}) \end{itemize} and in parallel section 5 of \begin{itemize}% \item [[Mark Hovey]], \emph{Model categories} (\href{http://math.unice.fr/~brunov/SecretPassage/Hovey-Model%20Categories.ps}{ps}) \end{itemize} and in sections 16, 17 of \begin{itemize}% \item [[Philip Hirschhorn]], \emph{Model categories and their localization} . \end{itemize} A useful quick review of the interrelation of the various constructions of derived hom spaces is page 14, 15 of \begin{itemize}% \item [[Clark Barwick]], \emph{On (enriched) left Bousfield localization of model categories} (\href{http://arxiv.org/abs/0708.2067}{arXiv}) \end{itemize} Discussion of derived hom spaces for [[categories of fibrant objects]] is in \begin{itemize}% \item [[Denis-Charles Cisinski]], \emph{Invariance de la K-th\'e{}orie par equivalences d\'e{}riv\'e{}es}, J. K-theory, 6 (2010), 505--546. \end{itemize} and section 3.6.2 of \begin{itemize}% \item [[Thomas Nikolaus]], [[Urs Schreiber]], [[Danny Stevenson]], \emph{[[schreiber:Principal ∞-bundles -- theory, presentations and applications|Principal ∞-bundles -- Presentations]]} (\href{http://arxiv.org/abs/1207.0249}{arXiv:1207.0249}) \end{itemize} [[!redirects (infinity,1)-categorical hom-spaces]] [[!redirects (∞,1)-categorical hom-space]] [[!redirects (∞,1)-categorical hom-spaces]] [[!redirects (infinity,1)-categorical hom space]] [[!redirects (∞,1)-categorical hom space]] [[!redirects (infinity,1)-categorial hom-space]] [[!redirects (∞,1)-categorial hom-space]] [[!redirects (infinity,1)-categorial hom space]] [[!redirects (∞,1)-categorial hom space]] [[!redirects derived hom space]] [[!redirects derived hom-space]] [[!redirects derived hom spaces]] [[!redirects derived hom-spaces]] [[!redirects hom-space]] [[!redirects hom-spaces]] [[!redirects hom-∞-groupoid]] [[!redirects hom-infinity-groupoid]] [[!redirects hom-(∞,0)-category]] [[!redirects hom-(infinity,0)-category]] [[!redirects hom ∞-groupoid]] [[!redirects hom infinity-groupoid]] [[!redirects hom (∞,0)-category]] [[!redirects hom (infinity,0)-category]] [[!redirects homotopy function complex]] [[!redirects homotopy function complexes]] [[!redirects (∞,1)-hom (∞,1)-functor)]] [[!redirects (∞,1)-categorical hom]] [[!redirects (∞,1)-categorical hom-spaces]] \end{document}