\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{(infinity,1)-category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-topos theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{quasicategories}{Quasi-categories}\dotfill \pageref*{quasicategories} \linebreak \noindent\hyperlink{__and_simplicially_enriched_categories}{$Top$-, $Kan$- and simplicially enriched categories}\dotfill \pageref*{__and_simplicially_enriched_categories} \linebreak \noindent\hyperlink{homotopical_categories}{Homotopical categories}\dotfill \pageref*{homotopical_categories} \linebreak \noindent\hyperlink{model_categories}{Model categories}\dotfill \pageref*{model_categories} \linebreak \noindent\hyperlink{segal_categories_and_complete_segal_spaces}{Segal categories and complete Segal spaces}\dotfill \pageref*{segal_categories_and_complete_segal_spaces} \linebreak \noindent\hyperlink{categories}{$A_\infty$-categories}\dotfill \pageref*{categories} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{category_theory_2}{$(\infty,1)$-Category theory}\dotfill \pageref*{category_theory_2} \linebreak \noindent\hyperlink{the_collection_of_all_categories}{The collection of all $(\infty,1)$-categories}\dotfill \pageref*{the_collection_of_all_categories} \linebreak \noindent\hyperlink{model_category_presentations}{Model category presentations}\dotfill \pageref*{model_category_presentations} \linebreak \noindent\hyperlink{a_modelindependent_approach}{A model-independent approach}\dotfill \pageref*{a_modelindependent_approach} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{LectureNotes}{Surveys and lecture notes}\dotfill \pageref*{LectureNotes} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} According to the general pattern on [[(n,r)-category]], an $(\infty,1)$-category is a (weak) [[∞-category]] in which all $n$-morphisms for $n \geq 2$ are [[equivalences]]. This is the joint generalization of the notion of \emph{[[category]]} and \emph{[[∞-groupoid]]}. More precisely, this is the notion of \emph{[[category]]} up to [[coherence|coherent]] [[homotopy]]: an $(\infty,1)$-category is equivalently \begin{itemize}% \item an [[internal category in an (∞,1)-category|internal category]] in [[∞-groupoids]]/basic [[homotopy theory]] (as such usually modeled as a [[complete Segal space]]). \item a category [[enriched (infinity,1)-category |homotopy enriched]] over [[∞Grpd]] (as such usually modeled as a [[Segal category]]). \end{itemize} Among all [[(n,r)-category|(n,r)-categories]], $(\infty,1)$-categories are special in that they are the simplest structures that at the same time: \begin{itemize}% \item admit a [[higher category theory|higher version]] of [[category theory]] ([[limit]]s, [[adjunction]]s, [[Grothendieck construction]], etc, [[sheaf and topos theory]], etc.) : [[(infinity,1)-category theory]] \item and know everything about higher [[equivalences]]. \end{itemize} Notably for understanding the collections of all [[(n,r)-category|(n,r)-categories]] for arbitrary $n$ and $r$, which in general is an $(n+1,r+1)$-category, the knowledge of the underlying $(n,1)$- (and hence $(\infty,1)$-)category already captures much of the information of interest: it allows to decide if two given $(n,r)$-categories are equivalent and allows to obtain new $(n,r)$-categories from existing ones by universal constructions. The collection of all $(\infty,1)$-categories forms the [[(∞,2)-category]] [[(∞,1)Cat]]. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} There are a number of different ways to make the idea of an $(\infty,1)$-category precise, including [[quasi-categories]], [[simplicial set|simplicially]] [[enriched categories]], [[topologically enriched categories]], [[Segal categories]], [[complete Segal spaces]], and $A_\infty$-[[A-infinity categories|categories]] (most of which can be done either simplicially or topologically). Additionally, any notion of [[∞-category]] can be specialized to a notion of $(\infty,1)$-category by simply requiring all $n$-cells for $n\gt 1$ to be invertible. Unlike the case for general notions of $n$-category, almost all the definitions of $(\infty,1)$-category are known to form [[model categories]] that are [[Quillen equivalence|Quillen equivalent]]. See also [[n-category]] for a summary of the state of the art about definitions of $n$-category and comparisons between them. \hypertarget{quasicategories}{}\subsubsection*{{Quasi-categories}}\label{quasicategories} We start with the definition of ``$(\infty,1)$-category'' that was promoted by [[Andre Joyal]] as a good model for the theory. This goes back to Boardman-Vogt in the 1970s and was further developed, by [[Jean-Marc Cordier]] and [[Tim Porter]] in the early 1980s. This is a [[geometric definition of higher category]] which conceives an $(\infty,1)$-category as a [[simplicial set]] with extra [[stuff, structure, property|property]]. It is a straightforward generalization of the definition of [[∞-groupoid]] as a [[Kan complex]], and, in fact, one alternative term used early on was `weak Kan complex'; see below. Recall that a [[Kan complex]] is a [[simplicial set]] in which every [[horn]] $\Lambda^k[n]$, $0 \leq k \leq n$ has a \emph{filler}. This condition may be read in words as: every collection of adjacent $n$-cells has a composite $n$-cell, even if the orientations of the cells don't match. This implicitly encodes the \emph{invertibility} of every cell: if the orientation does not match, we can invert the cell and then compose. From this perspective one observes, by looking closely at the combinatorics, that the invertibility of the 1-cells in the simplicial set is enforced particularly by the condition that the [[horn|outer horns]] $\Lambda^0[n]$ and $\Lambda^n[n]$ have fillers. Therefore in a [[simplicial set]] in which \emph{only the inner horns} $\Lambda^k[n]$ for $0 \lt k \lt n$ have fillers all cells are required to have a kind of inverse, except the 1-cells. (They may have inverses, too, but are not required to). This is evidently a realization of the idea of an [[(n,r)-category]] with $n = \infty$ and $r = 1$. Such a simplicial set with fillers for all inner horns \begin{itemize}% \item Boardman and Vogt called a \emph{weak Kan complex} ; \item [[Andre Joyal]] called a [[quasi-category]]; \item [[Jacob Lurie]] called an $\infty$-category. \end{itemize} Here we follow Joyal and say [[quasi-category]] when we mean concretely the simplicial sets with extra property. We use the more general term ``$(\infty,1)$-category'' for this or any of its equivalent models, discussed below, in order to distinguish from the term [[∞-category]] or [[∞-category]] that is more traditionally understood to generically mean an $\infty$-category with no conditions on invertibility (in terms of [[(n,r)-category]]: an $(\infty,\infty)$-category). With [[quasi-category|quasi-categories]] being just [[simplicial sets]] with extra property, there are evident and simple definitions of \begin{itemize}% \item the [[(infinity,1)-category of (infinity,1)-functors|quasi-category of (∞,1)-functors]] between two [[quasi-categories]] $C$ and $D$; \item the quasi-category of all [[∞-groupoids]]; \item the [[(infinity,1)-category of (infinity,1)-categories|quasi-category of all quasi-categories]]. \end{itemize} Similarly, [[Andre Joyal]] and [[Jacob Lurie]] have shown that all other constructions in [[category theory]] have good generalizations to quasi-categories, which usually have conceptually simple formulations: see [[Higher Topos Theory]] for more. \hypertarget{__and_simplicially_enriched_categories}{}\subsubsection*{{$Top$-, $Kan$- and simplicially enriched categories}}\label{__and_simplicially_enriched_categories} Despite the conceptual simplicity of [[quasi-category|quasi-categories]], for computations and in particular for obtaining examples, it is often useful to pass to a slightly different model. Recall that we said at the beginning that an $(\infty,1)$-category is supposed to be like an [[enriched category]] which is enriched over the category of [[∞-groupoids]]. This turns out to make sense literally if one takes care to remember that $\infty$-groupoids themselves form a higher category. As discussed at [[homotopy hypothesis]] there is a Quillen equivalence of the [[model category|model categories]] of \begin{itemize}% \item the [[model structure on topological spaces|standard model structure]] on the [[nice category of spaces|nice category]] of compactly generated weakly Hausdorff [[topological spaces]]; \item the [[model structure on simplicial sets|standard model structure]] on the category of [[Kan complex]]es. \end{itemize} In fact, this is also equivalent to \begin{itemize}% \item the [[model structure on simplicial sets|standard model structure]] on the category [[SimpSet|SSet]] of [[simplicial sets]]. \end{itemize} If we take the notion of [[Kan complex]] to be the most manifest incarnation of the idea ``[[∞-groupoid]]'', then under these equivalences one may think of \begin{itemize}% \item a [[simplicial set]] as representing the [[Kan complex]] which is obtained from it by ``freely throwing in the missing inverses'' of cells (technically: as representing its fibrant replacement); \item a [[topological space]] $X$ as representing the [[Kan complex]] $\Pi(X)$, whose \begin{itemize}% \item 0-cells are the points of $X$; \item 1-cells are the paths in $X$; \item 2-cells are the triangles in $X$; \item etc. \end{itemize} \end{itemize} With this interpretation understood (i.e. with these model structures understood), [[SimpSet|SSet]]-enriched categories do model $(\infty,1)$-categories. For more see \begin{itemize}% \item [[relation between quasi-categories and simplicial categories]] \end{itemize} \hypertarget{homotopical_categories}{}\subsubsection*{{Homotopical categories}}\label{homotopical_categories} A [[homotopical category]] is a category $C$ equipped with a class $W$ of [[category with weak equivalences|weak equivalences]]. Every homotopical category $(C,W)$ has a \emph{quasi-localisation} $C[W(-1)]$ which is a [[quasi-category]]. The simplicial set $C[W(-1)]$ is obtained from the [[nerve]] of $C$ by freely gluing a [[homotopy]] inverse to each [[morphism]] in $W$, and then, by adding simplices to turn it into a quasi-category (this last step is called a fibrant completion). The [[quasi-category]] $C[W(-1)]$ is equivalent to the [[Dwyer-Kan localisation]] of $C$ with respect to $W$, via the equivalence between [[quasi-category|quasi-categories]] and [[simplicially enriched category|simplicial categories]] mentioned above. Conversely, every quasi-category is equivalent to the quasi-localisation of a homotopical category. This gives a representation of all $(\infty,1)$-categories in terms of [[homotopical category|homotopical categories]]. It follows that many aspects of the theory of $(\infty,1)$-categories can be expressed in terms of [[category theory]]. When the homotopical category (C,W) is obtained from a Quillen model structure (by forgetting the cofibrations and the fibrations) the quasi-category CW{\tt \symbol{94}}(-1) has finite limits and colimits. Conversely, I conjecture that every quasi-category with finite limits and colimits is equivalent to the quasi-localisation of a model category. In fact, every locally presentable quasi-category is a quasi-localisation of a combinatorial model by a result of Lurie. More can be said: the underlying category can taken to be a category of presheaves by a result of Daniel Dugger. http://arxiv.org/abs/math/0007070 \hypertarget{model_categories}{}\subsubsection*{{Model categories}}\label{model_categories} A specific notion of [[homotopical category]] is that of a [[model category]]. $(\infty,1)$-categories obtained as the Dwyer-Kan simplicial localizations of model categories have for instance finite $(\infty,1)$-[[limit]]s and $(\infty,1)$-[[colimit]]s. The [[presentable (∞,1)-category|locally presentable (∞,1)-categories]] are precisely those presented this way by [[combinatorial model category|combinatorial model categeories]]. At the very beginning, a [[model category]] was understood as a ``model for the category [[Top]] of topological spaces,'' or more precisely [[homotopy types]]: some [[category]] with extra [[stuff, structure, property|structure and properties]] which allows one to perform all operations familiar of the [[homotopy theory]] of [[topological spaces]]. As mentioned above, from the point of view of [[(∞,1)-categories]], [[Top]] may naturally be regarded an as [[(∞,1)-category]] and is in fact the archetypical example, analogous to how [[Set]] is the archetypical example of an ordinary [[category]]. This indicates that, more generally, a [[model category]] should actually be a means to model (i.e. encode) in 1-categorical terms an $(\infty,1)$-category, and of course this is true since indeed any [[category with weak equivalences]] presents an $(\infty,1)$-category via Dwyer-Kan simplicial localization. In the case of a model category, however, or at least a [[simplicial model category]], this $(\infty,1)$-category has a different, simpler construction. \begin{itemize}% \item A [[simplicial model category]] $\mathbf{A}$ is, in particular, a [[simplicially enriched category]]. \item the full [[SSet]]-[[subcategory]] $\mathbf{A}^\circ$ on the fibrant-cofibrant objects of $\mathbf{A}$ happens to be [[Kan complex]]-[[enriched category|enriched]]; \item the [[homotopy coherent nerve]] $N(\mathbf{A}^\circ)$ of $\mathbf{A}^\circ$ is the [[quasi-category]] \emph{presented} by $A$. \end{itemize} Up to equivalence, this gives the same $(\infty,1)$-category as the Dwyer-Kan hammock localization. With the relation between [[simplicially enriched categories]] and [[quasi-category|quasi-categories]] via [[homotopy coherent nerve]] understood, we shall here often not distinguish between $\mathbf{A}^\circ$ and $N(\mathbf{A}^\circ)$ as the $(\infty,1)$-category [[presentable (infinity,1)-category|presented]] by a [[model category]] $A$. \hypertarget{segal_categories_and_complete_segal_spaces}{}\subsubsection*{{Segal categories and complete Segal spaces}}\label{segal_categories_and_complete_segal_spaces} Other models for $(\infty,1)$-categories are \begin{itemize}% \item [[Segal categories]]; \item [[complete Segal spaces]]. \end{itemize} Segal categories can be thought of as categories which are \emph{weakly} enriched in topological spaces/simplicial sets/Kan complexes, where the definition of ``weak'' makes use of the notion of [[homotopy]] and [[homotopy limit]] in [[Top]] or [[SimpSet|SSet]]. Complete Segal spaces are like [[internal categories in an (∞,1)-category]]. This construction principle in particular lends itself to iteration and hence to an inductive definition of [[(∞,n)-category]] via [[Segal n-categories]] and [[n-fold complete Segal spaces]]. \hypertarget{categories}{}\subsubsection*{{$A_\infty$-categories}}\label{categories} An $A_\infty$-[[A-infinity category|category]] can also be thought of as a category ``weakly enriched'' in spaces (i.e. $\infty$-groupoids), except that in contrast to the Segal approaches the ``weakness'' is specified [[algebraic definition of higher category|algebraically]] and parametrized by an [[operad]]. This approach can be generalized to the [[Trimble n-category|Trimble]] definition of $n$-category or $(\infty,n)$-category. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{category_theory_2}{}\subsubsection*{{$(\infty,1)$-Category theory}}\label{category_theory_2} A crucial point about the notion of \emph{$(\infty,1)$-category} is that it supports all the standard constructions and theorems of [[category theory]], if only the consistent replacements are made ([[isomorphism]] becomes [[equivalence]], etc.). See \emph{[[(∞,1)-category theory]]}. \hypertarget{the_collection_of_all_categories}{}\subsubsection*{{The collection of all $(\infty,1)$-categories}}\label{the_collection_of_all_categories} The collection of all $(\infty,1)$-categories forms an [[(∞,2)-category]] called [[(∞,1)Cat]]. Often it is useful to regard that as a (large) $(\infty,1)$-category itself, by discarding the non-invertible [[natural transformations]]. \hypertarget{model_category_presentations}{}\subsubsection*{{Model category presentations}}\label{model_category_presentations} There is a wealth of different presentations of $(\infty,1)$-categories. See \emph{[[table - models for (∞,1)-categories]]}. \hypertarget{a_modelindependent_approach}{}\subsection*{{A model-independent approach}}\label{a_modelindependent_approach} In practice, it can be useful to be able to treat all ``presentations of $(\infty,1)$-categories'' on the same equal footing (e.g. relative categories and topologically-enriched categories). While truly model-independent foundations of $(\infty,1)$-category theory do not (yet) exist, this can be accomplished \emph{within} any model of $(\infty,1)$-categories, which we proceed to describe. As quasicategories are by far the most well-developed, we use them as an ambient framework. We also take care to make as few choices (even ``contractible'' ones) as possible. However, we do not explicitly mention set-theoretic issues, though these are easily handled using Grothendieck universes. \begin{enumerate}% \item Consider the $Kan$-enriched category $\underline{QCat}$ of quasicategories; for quasicategories $C$ and $D$, the Kan complex of morphisms between them is $\underline{hom}_{\underline{QCat}} = \iota(\underline{hom}_{sSet}(C,D))$, the largest Kan complex contained in their internal hom simplicial set. \item Define a \emph{relative quasicategory} to be a quasicategory equipped with a full sub-quasicategory of ``weak equivalences'' containing all equivalences. For relative quasicategories $(C,W_C)$ and $(D,W_D)$, write $\underline{hom}_{\underline{RelQCat}}((C,W_C),(D,W_D)) \subset \underline{hom}_{\underline{QCat}}(C,D)$ for the sub-Kan complex consisting of those maps which take $W_C$ into $W_D$. Note that using this definition, this is actually the inclusion of a disjoint union of connected components among Kan complexes (in the strictest possible sense). \item There is an evident inclusion $min : \underline{QCat} \to \underline{RelQCat}$, which takes a quasicategory $C$ to the relative quasicategory $(C,C^\simeq)$. \item Although a Quillen equivalence $M_1 \rightleftarrows M_2$ between model categories determines an equivalence of homotopy categories, note that neither adjoint functor need preserve weak equivalences. On the other hand, the restrictions $M_1^c \hookrightarrow M_1 \rightarrow M_2$ and $M_1 \leftarrow M_2 \hookleftarrow M_2^f$ (to the cofibrant objects of $M_1$ and the fibrant objects of $M_2$) do preserve weak equivalences, and these determine a hexagonal diagram of weak equivalences between relative categories (in the Barwick--Kan model structure), as in \href{http://nyjm.albany.edu/j/2016/22-4.html}{MazelGee16, Figure 1}. \item Using the previous observation, expand the diagram in the introduction of \href{http://arxiv.org/abs/1112.0040}{BarwickSchommerPries} (relating a great many Quillen equivalent model categories presenting ``the homotopy theory of $(\infty,1)$-categories'') into a diagram of weak equivalences between relative categories. As relative categories are particular examples of relative quasicategories, this defines a functor $F : K \to \underline{RelQCat}$ among fibrant objects of $(Cat_{sSet})_{Bergner}$. \item Now, apply the right Quillen equivalence $N^{hc} : (Cat_{sSet})_{Bergner} \to sSet_{Joyal}$ (the homotopy-coherent nerve) to this cospan $\underline{QCat} \xrightarrow{min} \underline{RelQCat} \leftarrow K$. \item The morphism $N^{hc}(min)$ of quasicategories admits a contractible Kan complex worth of quasicategorical left adjoints, any of which presents the \emph{localization} of relative quasicategories. Choose one, and denote this quasicategorical adjunction by $L : N^{hc} (\underline{RelQCat}) \rightleftarrows N^{hc} ( \underline{QCat}) : min$. \item It follows from the main theorem of \href{http://arxiv.org/abs/math/0409598}{Toen} that the composite map $L \circ N^{hc}(F) : N(K) \cong N^{hc}(K) \to N^{hc}(\underline{RelQCat}) \to N^{hc}(\underline{QCat})$ is ``essentially contractible'' in the quasicategorical sense. More precisely, for any cofibration into an acyclic object $i : N(K) \to K' \approx pt$ in $sSet_{Joyal}$, there exists a contractible Kan complex worth of extensions of $L \circ N^{hc}(F)$ over $i$. \item Define $(The(\infty,1)Cats) \subset N^{hc}(\underline{QCat})$ to be the maximal sub-Kan complex generated by the image of $L \circ N^{hc}(F)$. We write $Cat_{(\infty,1)} \in (The(\infty,1)Cats)$ for \emph{any} vertex, and propose that to work ``model-independently'' is to work \emph{within} $Cat_{(\infty,1)}$. \end{enumerate} This sequence of maneuvers balances twin aims. On the one hand, Toen's theorem asserts that after choosing a basepoint, this Kan complex is a model for $B(\mathbb{Z}/2)$. Thus, any sort of object which might be considered as ``a presentation of an $(\infty,1)$-category'' canonically determines an object of $Cat_{(\infty,1)}$ (where ``canonical'' must still be taken in the quasicategorical sense). On the other hand, it is completely independent of which vertex of $(The(\infty,1)Cats)$ we choose. \href{http://ncatlab.org/nlab/files/relcats-modelcats-qcats-inftycats.jpg}{This diagram}, taking place in $N^{hc}(\underline{QCat})$, elaborates on certain salient aspects of the passage from models of $(\infty,1)$-categories to a model-independent approach. (For a small amount of explanation of this diagram, see \href{https://nforum.ncatlab.org/discussion/7029/a-diagram-relating-different-models-of-inftycategories/#Item_0}{here}.) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[table - models for (∞,1)-categories]] \item [[0-category]], [[(0,1)-category]] \item [[category]] \item [[2-category]], [[(2,1)-category]] \item [[3-category]] \item [[n-category]] \item [[(∞,0)-category]] \item [[(n,1)-category]] \item \textbf{(∞,1)-category}, [[internal (∞,1)-category]], [[∞-groupoid]] \begin{itemize}% \item [[locally cartesian closed (∞,1)-category]] \item [[(∞,1)-topos]] \item [[semiadditive (∞,1)-category]], [[additive (∞,1)-category]] \item [[stable (∞,1)-category]] \item [[monoidal (∞,1)-category]] \item [[locally presentable (∞,1)-category]], [[accessible (∞,1)-category]], [[compactly generated (∞,1)-category]] \item [[disjunctive (∞,1)-category]] \end{itemize} \item [[(∞,2)-category]] \item [[(∞,n)-category]] \item [[(n,r)-category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} For several years [[Andre Joyal]] -- who was one of the first to promote the idea that for studying [[higher category theory]] it is good to first study $(\infty,1)$-categories in terms of [[quasi-category|quasi-categories]] -- has been preparing a textbook on the subject. This still doesn't quite exist, but an extensive write-up of lecture notes does: \begin{itemize}% \item [[André Joyal]], \emph{The theory of quasicategories and its applications} lectures at \href{http://www.crm.es/HigherCategories/}{Simplicial Methods in Higher Categories}, (\href{http://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern45-2.pdf}{pdf}) \end{itemize} Further notes (where the term ``[[logos]]'' is used instead of [[quasi-category]]) are in \begin{itemize}% \item [[André Joyal]], \emph{Notes on Logoi}, 2008 (\href{http://www.math.uchicago.edu/~may/IMA/JOYAL/Joyal.pdf}{pdf}) \end{itemize} Meanwhile [[Jacob Lurie]], building on Joyal's work, has considerably pushed the theory further. A comprehensive discussion of the theory of $(\infty,1)$-categories in terms of the models [[quasi-category]] and [[simplicially enriched category]] is \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} . \end{itemize} An brief exposition from the point of view of [[algebraic topology]] is in \begin{itemize}% \item [[Jacob Lurie]], \emph{What is\ldots{} an $\infty$-category?}, \emph{Notices of the AMS}, September 2008 (\href{http://www.ams.org/notices/200808/tx080800949p.pdf}{pdf}) \end{itemize} A useful comparison of the four [[model category]] structures on \begin{itemize}% \item [[quasi-categories]]; \item [[simplicially enriched categories]]; \item [[Segal categories]]; \item [[complete Segal spaces]]. \end{itemize} is in \begin{itemize}% \item [[Julie Bergner]], \emph{A survey of $(\infty,1)$-categories} (\href{http://arxiv.org/abs/math/0610239}{arXiv}) \end{itemize} More discussion of the other two models can be found at \begin{itemize}% \item [[Jacob Lurie]], \emph{[[On the Classification of Topological Field Theories]]} \end{itemize} and in the references listed at \emph{[[(∞,n)-category]]}. The relation between [[quasi-category|quasi-categories]] and [[simplicially enriched categories]] was discussed in detail in \begin{itemize}% \item [[Dan Dugger]], [[David Spivak]], \emph{Rigidification of quasi-categories} (\href{http://arxiv.org/abs/0910.0814}{arXiv:0910.0814}) \item [[Dan Dugger]], [[David Spivak]], \emph{Mapping spaces in quasi-categories} (\href{http://arxiv.org/abs/0911.0469}{arXiv:0911.0469}) \end{itemize} The presentation of $(\infty,1)$-categories by [[homotopical categories]] and [[model categories]] is discussed in \begin{itemize}% \item [[William Dwyer]], [[Philip Hirschhorn]], [[Daniel Kan]], [[Jeff Smith]], \emph{[[Homotopy Limit Functors on Model Categories and Homotopical Categories]]} , volume 113 of Mathematical Surveys and Monographs \end{itemize} A model by [[stratified spaces]] is in \begin{itemize}% \item [[David Ayala]], [[John Francis]], [[Nick Rozenblyum]], \emph{A stratified homotopy hypothesis} (\href{http://arxiv.org/abs/1502.01713}{arXiv:1502.01713}) \end{itemize} A more model-independent abstract formulation is discussed in \begin{itemize}% \item [[Emily Riehl]], [[Dominic Verity]], \emph{Infinity category theory from scratch}, 2016 (\href{http://www.math.jhu.edu/~eriehl/scratch.pdf}{pdf}) \end{itemize} And is being developed in a book in progress, regularly being updated: \begin{itemize}% \item [[Emily Riehl]] and [[Dominic Verity]], \emph{Elements of $\infty$-Category Theory}, (2019) (\href{http://www.math.jhu.edu/~eriehl/elements.pdf}{pdf}) \end{itemize} For discussion in [[homotopy type theory]] see \emph{[[internal category in homotopy type theory]]} and see \begin{itemize}% \item [[Emily Riehl]], [[Michael Shulman]], \emph{A type theory for synthetic $\infty$-categories} (\href{https://arxiv.org/abs/1705.07442}{arXiv:1705.07442}) \item [[Emily Riehl]], \emph{The synthetic theory of ∞-categories vs the synthetic theory of ∞-categories}, talk at \href{http://www.math.ias.edu/vvmc2018}{Vladimir Voevodsky Memorial Conference 2018} (\href{http://www.math.jhu.edu/~eriehl/Voevodsky.pdf}{pdf}) \end{itemize} \hypertarget{LectureNotes}{}\subsubsection*{{Surveys and lecture notes}}\label{LectureNotes} An introduction to [[higher category theory]] through $(\infty,1)$-categories is \begin{itemize}% \item Omar Antol\'i{}n Camarena, \emph{A whirlwind tour of the world of $(\infty,1)$-categories}, 2013 (\href{http://arxiv.org/abs/1303.4669}{arXiv:1303.4669}) \end{itemize} A foundational set of lecture notes is developing in \begin{itemize}% \item [[Denis-Charles Cisinski]], \emph{Higher category theory and homotopical algebra} (\href{http://www.mathematik.uni-regensburg.de/cisinski/CatLR.pdf}{pdf}) \end{itemize} A survey with an eye towards [[higher algebra]] is in \begin{itemize}% \item [[Moritz Groth]], \emph{A short course on $\infty$-categories} (\href{http://www.math.uni-bonn.de/~mgroth/InfinityCategories.pdf}{pdf}) \end{itemize} A survey on various notions of Homotopical category: \begin{itemize}% \item [[Emily Riehl]], \emph{Homotopical categories: from model categories to (∞,1)-categories} (\href{https://arxiv.org/abs/1904.00886}{arXiv:1904.00886}) \end{itemize} Lecture notes are in \begin{itemize}% \item [[Dylan Wilson]], \emph{Lectures on higher categories} (\href{https://sites.google.com/a/uw.edu/dwilson/notes}{pdf}) \item [[Emily Riehl]], \emph{[[Categorical Homotopy Theory]]} \end{itemize} See also \begin{itemize}% \item [[Zhen Lin Low]], \emph{[[Notes on homotopical algebra]]} \end{itemize} [[!redirects (∞,1)-category]] [[!redirects (∞,1)-categories]] [[!redirects (infinity,1)-categories]] [[!redirects infinity comma one category]] [[!redirects (?\%2C1)-category]] \end{document}