\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{(infinity,1)-category of (infinity,1)-functors} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{models}{Models}\dotfill \pageref*{models} \linebreak \noindent\hyperlink{Limits}{Limits and colimits}\dotfill \pageref*{Limits} \linebreak \noindent\hyperlink{equivalences}{Equivalences}\dotfill \pageref*{equivalences} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The generalization of the notion of [[functor category]] from [[category theory]] to [[(∞,1)-category|(∞,1)]]-[[higher category theory]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $C$ and $D$ be [[(∞,1)-categories]], taken in their incarnation as [[quasi-category|quasi-categories]]. Then \begin{displaymath} Func(C,D) := sSet(C,D) \end{displaymath} is the [[simplicial set]] of morphisms of simplicial sets between $C$ and $D$ (in the standard [[sSet]]-[[enriched category|enrichment]] of $SSet$): \begin{displaymath} sSet(C,D) := [C,D] := ([n] \mapsto Hom_{sSet}(\Delta[n]\times C,D)) \,. \end{displaymath} The objects in $Fun(C,D)$ are the [[(∞,1)-functors]] from $C$ to $D$, the morphisms are the corresponding [[natural transformations]] or [[homotopy|homotopies]], etc. \begin{prop} \label{}\hypertarget{}{} The simplicial set $Fun(C,D)$ is indeed a [[quasi-category]]. In fact, for $C$ and $D$ any simplicial sets, $Fun(C,D)$ is a [[quasi-category]] if $D$ is a [[quasi-category]]. \end{prop} \begin{proof} Using that [[sSet]] is a [[closed monoidal category]] the [[horn]] filling conditions \begin{displaymath} \itexarray{ \Lambda[n]_i &\to& [C,D] \\ \downarrow & \nearrow \\ \Delta[n] } \end{displaymath} are equivalent to \begin{displaymath} \itexarray{ C \times \Lambda[n]_i &\to& D \\ \downarrow & \nearrow \\ C \times \Delta[n] } \,. \end{displaymath} Here the vertical map is [[fibrations of quasi-categories|inner anodyne]] for inner horn inclusions $\Lambda[n]_i \hookrightarrow \Delta[n]$, and hence the lift exists whenever $D$ has all inner horn fillers, hence when $D$ is a [[quasi-category]]. \end{proof} For the definition of $(\infty,1)$-functors in other models for $(\infty,1)$-categories see [[(∞,1)-functor]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{models}{}\subsubsection*{{Models}}\label{models} The projective and injective [[global model structure on functors]] as well as the [[Reedy model structure]] if $C$ is a [[Reedy category]] [[presentable (infinity,1)-category|presents]] $(\infty,1)$-categories of $(\infty,1)$-functors, at least when there exists a [[combinatorial simplicial model category]] model for the codomain. Let \begin{itemize}% \item $C$ be a small [[sSet]]-[[enriched category]]; \item $A$ a [[combinatorial simplicial model category]] and $A^\circ$ its full [[sSet]]-subcategory of fibrant cofibrant objects; \item $[C,A]$ the [[sSet]]-[[enriched functor category]] equipped with either the injective or projective [[global model structure on functors]] -- here: the injective or injective [[model structure on sSet-enriched presheaves]] -- and $[C,A]^\circ$ its full [[sSet]]-[[subcategory]] on fibrant-cofibrant objects. \end{itemize} Write $N : sSet Cat \to sSet$ for the [[homotopy coherent nerve]]. Since this is a [[right adjoint]] it preserves [[product]]s and hence we have a canonical morphism \begin{displaymath} N(C) \times N([C,A]) \simeq N(C \times [C,A]) \stackrel{N(ev)}{\to} N(A) \end{displaymath} induced from the hom-[[adjunct]] of $Id : [C,A] \to [C,A]$. The fibrant-cofibrant objects of $[C,A]$ are [[enriched functor]]s that in particular take values in fibrant cofibrant objects of $A$. Therefore this restricts to a morphism \begin{displaymath} N(C) \times N([C,A]^\circ) \stackrel{N_{hc}(ev)}{\to} N(A^\circ) \,. \end{displaymath} By the [[internal hom]] [[adjunction]] this corresponds to a morphism \begin{displaymath} N([C,A]^\circ) \stackrel{}{\to} sSet(N_{hc}(C), N(A^\circ)) \,. \end{displaymath} Here $A^\circ$ is [[Kan complex]] enriched by the axioms of an $sSet_{Quillen}$- [[enriched model category]], and so $N(A^\circ)$ is a [[quasi-category]], so that we may write this as \begin{displaymath} \cdots = Func(N(C), N(A^\circ)) \,. \end{displaymath} \begin{prop} \label{PresentationByModelStructuresOnFunctors}\hypertarget{PresentationByModelStructuresOnFunctors}{} This canonical morphism \begin{displaymath} N([C,A]^\circ) \stackrel{}{\to} Func(N(C), N(A^\circ)) \end{displaymath} is an $(\infty,1)$-equivalence in that it is a weak equivalence in the [[model structure for quasi-categories]]. \end{prop} This is (\hyperlink{Lurie}{Lurie, prop. 4.2.4.4}). \begin{proof} The strategy is to show that the objects on both sides are [[exponential object]]s in the [[homotopy category]] of $sSet_{Joyal}$, hence isomorphic there. That $Func(N(C), N(A^\circ)) \simeq (N(A^\circ))^{N(C)}$ is an exponential object in the homotopy category is pretty immediate. That the left hand is an isomorphic exponential follows from (\hyperlink{Lurie}{Lurie, corollary A.3.4.12}), which asserts that for $C$ and $D$ $sSet$-[[enriched categories]] with $C$ cofibrant and $A$ as above, we have that composition with the evaluation map induces a bijection \begin{displaymath} Hom_{Ho(sSet Cat)}(D, [C,A]^\circ) \stackrel{\simeq}{\to} Hom_{Ho(sSet Cat)}(C \times D, A^\circ) \,. \end{displaymath} Since $Ho(sSet Cat_{Bergner}) \simeq Ho(sSet_{Joyal})$ this identifies also $N([C,A]^\circ)$ with the exponential object in question. \end{proof} \hypertarget{Limits}{}\subsubsection*{{Limits and colimits}}\label{Limits} For $C$ an ordinary [[category]] that admits small [[limit]]s and [[colimit]]s, and for $K$ a [[small category]], the [[functor category]] $Func(D,C)$ has all small limits and colimits, and these are computed objectwise. See [[limits and colimits by example]]. The analogous statement is true for $(\infty,1)$-categories of $(\infty,1)$-functors \begin{prop} \label{}\hypertarget{}{} Let $K$ and $C$ be [[quasi-categories]], such that $C$ has all [[limit in a quasi-category|colimits]] indexed by $K$. Let $D$ be a small quasi-category. Then \begin{itemize}% \item The $(\infty,1)$-category $Func(D,C)$ has all $K$-indexed colimits; \item A morphism $K^\triangleright \to Func(D,C)$ is a colimiting cocone precisely if for each object $d \in D$ the induced morphism $K^\triangleright \to C$ is a colimiting cocone. \end{itemize} \end{prop} This is (\hyperlink{Lurie}{Lurie, corollary 5.1.2.3}). \hypertarget{equivalences}{}\subsubsection*{{Equivalences}}\label{equivalences} \begin{prop} \label{}\hypertarget{}{} A morphism $\alpha$ in $Func(D,C)$ (that is, a [[natural transformation]]) is an [[equivalence in an (infinity,1)-category|equivalence]] if and only if each component $\alpha_d$ is an equivalence in $C$. \end{prop} This is due to (\hyperlink{Joyal}{Joyal, Chapter 5, Theorem C}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item Between ordinary categories, it reproduces the ordinary [[category of functors]]. \item Since the standard [[model structure on simplicial sets]] presents [[? Grpd]] \begin{displaymath} (sSet_{Quillen})^\circ \simeq \infty Grpd \end{displaymath} the [[model structure on simplicial presheaves]] (more precisely and more generally the [[model structure on sSet-enriched presheaves]]) on the [[opposite (∞,1)-category]] $C^{op}$ [[presentable (infinity,1)-category|presents]] the [[(∞,1)-category of (∞,1)-presheaves]] on $C$: \begin{displaymath} N([C^{op},sSet_{Quillen}]^\circ) \simeq Func(C^{op},\infty Grpd) = PSh_{(\infty,1)}(C) \,. \end{displaymath} \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[functor category]] \item [[2-functor 2-category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The intrinsic definition is in section 1.2.7 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} The discussion of [[model category]] models is in A.3.4. The theorem about equivalences is in \begin{itemize}% \item [[André Joyal]], \emph{The theory of quasicategories and its applications} lectures at \emph{\href{http://www.crm.es/HigherCategories/}{Simplicial Methods in Higher Categories}}, (\href{http://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern45-2.pdf}{pdf}) \end{itemize} [[!redirects (∞,1)-category of (∞,1)-functors]] [[!redirects (∞,1)-categories of (∞,1)-functors]] [[!redirects (infinity,1)-functor category]] [[!redirects functor (infinity,1)-category]] [[!redirects (∞,1)-functor categories]] [[!redirects functor (∞,1)-categories]] [[!redirects (infinity,1)-functor category]] [[!redirects functor (infinity,1)-category]] [[!redirects (∞,1)-functor categories]] [[!redirects functor (∞,1)-categories]] [[!redirects functor (∞,1)-category]] [[!redirects (∞,1)-functor (∞,1)-category]] [[!redirects (∞,1)-functor (∞,1)-categories]] \end{document}