\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{(infinity,1)-category of (infinity,1)-presheaves} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{Models}{Models}\dotfill \pageref*{Models} \linebreak \noindent\hyperlink{limits_and_colimits}{Limits and colimits}\dotfill \pageref*{limits_and_colimits} \linebreak \noindent\hyperlink{FreeColimCompletion}{As the free completion under colimits}\dotfill \pageref*{FreeColimCompletion} \linebreak \noindent\hyperlink{WithOvercategories}{Relation to slicing}\dotfill \pageref*{WithOvercategories} \linebreak \noindent\hyperlink{subcategories_of_presheaf_categories}{$(\infty,1)$-subcategories of $(\infty)$-presheaf categories}\dotfill \pageref*{subcategories_of_presheaf_categories} \linebreak \noindent\hyperlink{locally_presentable_categories}{Locally presentable $(\infty,1)$-categories}\dotfill \pageref*{locally_presentable_categories} \linebreak \noindent\hyperlink{sheaf_categories}{$(\infty,1)$-Sheaf $(\infty,1)$-categories}\dotfill \pageref*{sheaf_categories} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} For [[∞Grpd]] the [[(∞,1)-category]] of [[∞-groupoids]], and for $S$ a [[(∞,1)-category]] (or in fact any [[simplicial set]]), an \textbf{$(\infty,1)$-presheaf} on $S$ is an $(\infty,1)$-functor \begin{displaymath} F : S^{op} \to \infty Grpd \,. \end{displaymath} The \textbf{$(\infty,1)$-category of $(\infty,1)$-presheaves} is the [[(∞,1)-category of (∞,1)-functors]] \begin{displaymath} PSh_{(\infty,1)}(S) := Func(S^{op}, \infinity Grpd) \,. \end{displaymath} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{Models}{}\subsubsection*{{Models}}\label{Models} A [[model category|model]] for an $(\infty,1)$-presheaf categories is the [[model structure on simplicial presheaves]]. See also the discussion at [[models for ∞-stack (∞,1)-toposes]]. \begin{uprop} For $C$ a [[simplicially enriched category]] with [[Kan complex]]es as hom-objects, write $[C^{op}, sSet_{Quillen}]_{proj}$ and $[C^{op}, sSet_{Quillen}]_{inj}$ for the projective or injective, respectively, gloabl [[model structure on simplicial presheaves]]. Write $(-)^\circ$ for the full [[sSet]]-[[enriched category|enriched]] [[subcategory]] on fibrant-cofibrant objects, and $N(-)$ for the [[homotopy coherent nerve]] that sends a Kan-complex enriched category to a [[quasi-category]]. Then there is an [[equivalence of quasi-categories]] \begin{displaymath} PSh(N(C)) \simeq N ([C^{op}, sSet_{Quillen}]_{proj})^\circ \,. \end{displaymath} Similarly for the injective model structure. \end{uprop} \begin{proof} This is a special case of the more general statement that the [[model structure on functors]] models an [[(∞,1)-category of (∞,1)-functors]]. See there for more details. \end{proof} Notice that the result in particular means that any $(\infty,1)$-presheaf -- an ``$\infty$-[[pseudofunctor]]'' -- may be \emph{straightened} or \emph{rectified} to a genuine [[sSet]]-[[enriched functor]], that respects horizontal compositions strictly. \hypertarget{limits_and_colimits}{}\subsubsection*{{Limits and colimits}}\label{limits_and_colimits} In an ordinary [[category of presheaves]], [[limit]]s and colimits are computed objectwise, as described at [[limits and colimits by example]]. The analogous statement is true for [[limit in a quasi-category|(∞,1)-limits]] and colimits in an $(\infty,1)$-category of $(\infty,1)$-presheaves. This is a special case of the general existence of limits and colimits in an [[(∞,1)-category of (∞,1)-functors]]. See there for more details. \begin{ucor} For $C$ a small $(\infty,1)$-category, the $(\infty,1)$-category $PSh(C)$ admits all small limits and colimits. \end{ucor} See around [[Higher Topos Theory|HTT, cor. 5.1.2.4]]. \hypertarget{FreeColimCompletion}{}\subsubsection*{{As the free completion under colimits}}\label{FreeColimCompletion} An ordinary [[category of presheaves]] on a small category $C$ is the [[free cocompletion]] of $C$, the free completion under forming colimits. The analogous result holds for $(\infty,1)$-category of $(\infty,1)$-presheaves. \begin{ulemma} Let $C$ be a small [[quasi-category]] and $j : S \to PSh(C)$ the [[(∞,1)-Yoneda embedding]]. The identity [[(∞,1)-functor]] $Id : PSh(C) \to PSh(C)$ is the left [[(∞,1)-Kan extension]] of $j$ along itself. \end{ulemma} \begin{proof} This is [[Higher Topos Theory|HTT, lemma 5.1.5.3]]. \end{proof} For $D$ a [[quasi-category]] with all small [[limit in a quasi-category|colimits]], write $Func^L(PSh(C),D) \subset Func(PSh(C),D)$ for the full [[sub-quasi-category]] of the [[(∞,1)-category of (∞,1)-functors]] on those that preserve small [[limit in a quasi-category|colimits]]. \begin{ulemma} Composition with the Yoneda embedding $j : C \to PSh(C)$ induces an [[equivalence of quasi-categories]] \begin{displaymath} Func^L(PSh(C),D) \to Func(C,D) \,. \end{displaymath} \end{ulemma} \begin{proof} This is [[Higher Topos Theory|HTT, theorem 5.1.5.6]]. \end{proof} In terms of the model given by the [[model structure on simplicial presheaves]], this is statement made in \begin{itemize}% \item [[Dan Dugger]], \emph{[[Universal homotopy theories]]} , \end{itemize} which gives that article its name. \begin{udef} Let $A$ and $B$ be [[model categories]], $D$ a plain [[category]] and \begin{displaymath} \itexarray{ D &\stackrel{r}{\to}& A \\ & \searrow_\gamma \\ && B } \end{displaymath} two plain [[functor]]s. Say that a \textbf{model-category theoretic factorization} of $\gamma$ through $A$ is \begin{enumerate}% \item a [[Quillen adjunction]] $(L \dashv R) : A \stackrel{\overset{L}{\to}}{\underset{R}{\leftarrow}} B$ \item a [[natural transformation|natural]] weak equivalence $\eta : L \circ r \to \gamma$ \begin{displaymath} \itexarray{ D &&\stackrel{r}{\to}&& A \\ & \searrow_\gamma &{}^\eta\swArrow& \swarrow_L \\ && B } \,. \end{displaymath} \end{enumerate} Let the [[category]] of such factorizations have morphisms $((L \dashv R), \eta ) \to ((L' \dashv R'), \eta' )$ given by [[natural transformation]]s $L \to L'$ such that for all all objects $d \in D$ the diagrams \begin{displaymath} \itexarray{ L\circ r(d) &&\to&& L'\circ r(d) \\ & {}_{\eta_{d}}\searrow && \swarrow_{\eta'_{d}} \\ && \gamma() } \end{displaymath} commutes. \end{udef} Notice that the [[(∞,1)-category]] presented by a [[model category]] -- at least by a [[combinatorial model category]] -- has all [[limit in a quasi-category|(∞,1)-categorical colimits]], and that the Quillen left adjoint functor $L$ presents, via its [[derived functor]], a left [[adjoint (∞,1)-functor]] that preserves $(\infty,1)$-categorical colimits. So the notion of factorization as above is really about factorizations through colimit-preserving $(\infty,1)$-functors into $(\infty,1)$-categories that have all colimits. \begin{utheorem} \textbf{(model category presentation of free $(\infty,1)$-cocompletion)} For $C$ a [[small category]], the projective global [[model structure on simplicial presheaves]] $[C^{op}, sSet]_{proj}$ on $C$ is universal with respect to such factorizations of functors out of $C$: every functor $C \to B$ to any [[model category]] $B$ has a factorization through $[C^{op}, sSet]_{proj}$ as above, and the category of such factorizations is [[contractible]]. \end{utheorem} \begin{proof} This is theorem 1.1 in \begin{itemize}% \item [[Dan Dugger]], \emph{[[Universal homotopy theories]]} . \end{itemize} The proof is on page 30. To produce the factorization $[C^{op},sSet] \to B$ given the functor $\gamma$, first notice that the ordinary [[Yoneda extension]] $[C^{op},Set] \to B$ would be given by the left [[Kan extension]] given by the [[coend]] formula \begin{displaymath} F \mapsto \int^{c \in C} \gamma(c) \cdot F(c) \,, \end{displaymath} where the dot in the integrand is the [[copower|tensoring]] of cocomplete category $B$ over [[Set]]. To refine this to a [[Quillen adjunction|left Quillen functor]] $L : [C^{op},sSet] \to B$, \emph{choose} a [[cosimplicial resolution]] \begin{displaymath} \Gamma : C \to [\Delta,B] \end{displaymath} of $\gamma$. Then set \begin{displaymath} L : F \mapsto \int^{c \in C} \int^{[n] \in \Delta} \Gamma^n(c) \cdot F_n(c) \,. \end{displaymath} The [[right adjoint]] $R : B \to [C^{op},sSet]$ of this functor is given by \begin{displaymath} R(X) : c \mapsto Hom_B(\Gamma^\bullet(c), X) \,. \end{displaymath} For $(L \dashv R) : [C^{op}, sSet]_{proj} \stackrel{\to}{\leftarrow} B$ to be a [[Quillen adjunction]], it is sufficient to check that $R$ preserves fibrations and acyclic fibrations. By definition of the projective model structure this means that for every (acyclic) fibration $b_1 \to b_2$ in $B$ we have for every object $c \in C$ that that \begin{displaymath} Hom_C(\Gamma^\bullet(c), b_1 \to b_2) \end{displaymath} is an (acyclic) fibration of simplicial sets. But this is one of the standard properties of [[cosimplicial resolution]]s. Finally, to find the natural weak equivalence $\eta : L \circ j \simeq \gamma$, write $j : C \to [C^{op},sSet]$ for the [[Yoneda embedding]] and notice that by [[Yoneda reduction]] it follows that for $x \in C$ we have \begin{displaymath} L(j(x)) = \int^{c \in C} \int^{[n] \in \Delta} \Gamma^n(c) \cdot C(c,x) = \Gamma^0(x) \end{displaymath} (where equality signs denote [[isomorphism]]s). By the very definition of cosimplicial resolutions, there is a natural weak equivalence $\Gamma(x) \stackrel{\simeq}{\to}$. We can take this to be the component of $\eta$. \end{proof} \begin{ucor} The [[(∞,1)-Yoneda embedding]] $j : C \to PSh(C)$ generates $PSh(C)$ under small colimits: a full [[sub-quasi-category|(∞,1)-subcategory]] of $PSh(C)$ that contains all representables and is closed under forming $(\infty,1)$-colimits is already equivalent to $PSh(C)$. \end{ucor} \begin{proof} This is [[Higher Topos Theory|HTT, corollary 5.1.5.8]]. \end{proof} \hypertarget{WithOvercategories}{}\subsubsection*{{Relation to slicing}}\label{WithOvercategories} The following analog of the corresponding result for 1-[[categories of presheaves]] holds for $(\infty,1)$-presheaves. See [[functors and comma categories]]. \begin{prop} \label{SlicingCommutesWithFormingPresheaves}\hypertarget{SlicingCommutesWithFormingPresheaves}{} \textbf{(slicing commutes with passing to presheaves)} Let $\mathcal{C}$ be a [[small (∞,1)-category]] and $p \colon \mathcal{K} \to \mathcal{C}$ a [[diagram]]. Write $\mathcal{C}_{/p}$ and $PSh_\infty(\mathcal{C})/_{y p}$ for the corresponding [[over quasi-category|over categories]], where $y \colon \mathcal{C} \to PSh_\infty(\mathcal{C})$ is the [[(∞,1)-Yoneda embedding]]. Then we have an [[equivalence of quasi-categories|equivalence of (∞,1)-categories]] \begin{displaymath} PSh_\infty(\mathcal{C}_{/p}) \stackrel{\simeq}{\to} PSh_\infty(\mathcal{C})_{/y p} \,. \end{displaymath} \end{prop} This appears as [[Higher Topos Theory|HTT, 5.1.6.12]]. \hypertarget{subcategories_of_presheaf_categories}{}\subsection*{{$(\infty,1)$-subcategories of $(\infty)$-presheaf categories}}\label{subcategories_of_presheaf_categories} \hypertarget{locally_presentable_categories}{}\subsubsection*{{Locally presentable $(\infty,1)$-categories}}\label{locally_presentable_categories} A [[reflective (∞,1)-subcategory]] of an $(\infty,1)$-category of $(\infty,1)$-presheaves is called a [[presentable (∞,1)-category]]. \hypertarget{sheaf_categories}{}\subsubsection*{{$(\infty,1)$-Sheaf $(\infty,1)$-categories}}\label{sheaf_categories} If that [[left adjoint|left]] [[adjoint (∞,1)-functor]] to the embedding of the [[reflective (∞,1)-subcategory]] furthermore preserves finite [[limit]]s, then the subcategory is an [[(∞,1)-category of (∞,1)-sheaves]]: an [[(∞,1)-topos]] \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include locally presentable categories - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} This is the topic of section 5.1 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} [[!redirects (∞,1)-category of (∞,1)-presheaves]] [[!redirects (∞,1)-categories of (∞,1)-presheaves]] [[!redirects free (∞,1)-cocompletion]] [[!redirects free (infinity,1)-cocompletion]] [[!redirects (∞,1)-presheaf (∞,1)-topos]] [[!redirects (∞,1)-presheaf (∞,1)-toposes]] [[!redirects (infinity,1)-presheaf (infinity,1)-category]] [[!redirects (∞,1)-presheaf (∞,1)-category]] [[!redirects (infinity,1)-presheaf (infinity,1)-categories]] [[!redirects (∞,1)-presheaf (∞,1)-categories]] [[!redirects infinity-category of infinity-presheaves]] [[!redirects infinity-categories of infinity-presheaves]] \end{document}