\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{(infinity,1)-category of (infinity,1)-sheaves} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{locality_and_descent}{}\paragraph*{{Locality and descent}}\label{locality_and_descent} [[!include descent and locality - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{LocAndTopology}{Localizations and Grothendieck topology}\dotfill \pageref*{LocAndTopology} \linebreak \noindent\hyperlink{OverParacompactSpaces}{Over paracompact topological spaces}\dotfill \pageref*{OverParacompactSpaces} \linebreak \noindent\hyperlink{DiffToOthers}{Difference to more general $(\infty,1)$-toposes}\dotfill \pageref*{DiffToOthers} \linebreak \noindent\hyperlink{universal_property}{Universal property}\dotfill \pageref*{universal_property} \linebreak \noindent\hyperlink{compact_generation}{Compact generation}\dotfill \pageref*{compact_generation} \linebreak \noindent\hyperlink{NonabelianCohomology}{Nonabelian cohomology}\dotfill \pageref*{NonabelianCohomology} \linebreak \noindent\hyperlink{models}{Models}\dotfill \pageref*{models} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of $(\infty,1)$-category of $(\infty,1)$-sheaves is the generalization of the notion of [[category of sheaves]] from [[category theory]] to the [[higher category theory]] of [[(∞,1)-categories]]. \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} \begin{defn} \label{CategoryOfSheaves}\hypertarget{CategoryOfSheaves}{} An \textbf{$(\infty,1)$-category of $(\infty,1)$-sheaves} is a [[reflective sub-(∞,1)-category]] \begin{displaymath} Sh(C) \stackrel{\overset{L}{\leftarrow}}{\hookrightarrow} PSh(C) \end{displaymath} of an [[(∞,1)-category of (∞,1)-presheaves]] such that the following equivalent conditions hold \begin{itemize}% \item $L$ is a [[topological localization]]; \item there is the structure of an [[(∞,1)-site]] on $C$ such that the objects of $Sh(C)$ are precisely those [[(∞,1)-presheaves]] $A$ that are [[local objects]] with respect to the \emph{covering} [[monomorphism in an (∞,1)-category|monomorphisms]] $p : U \to j(c)$ in $PSh(C)$ in that \begin{equation} A(c) \simeq PSh(j(c),A) \stackrel{PSh(p,A)}{\to} PSh(U,A) \label{DescentCondition}\end{equation} is an [[(∞,1)-equivalence]] in [[∞Grpd]]. \end{itemize} \end{defn} This is [[Higher Topos Theory|HTT, def. 6.2.2.6]]. An $(\infty,1)$-category of $(\infty,1)$-sheaves is an \textbf{[[(∞,1)-topos]]}. \begin{remark} \label{}\hypertarget{}{} Equivalence \eqref{DescentCondition} is the \emph{[[descent]]} condition and the presheaves satisfying it are the \textbf{[[(∞,1)-sheaves]]} . Typically $U$ here is the [[Cech nerve]] \begin{displaymath} C(\{U_i\}) = \lim_{\to_{[n]}} U_{i_0, \cdots U_{i_n}} \end{displaymath} of a [[covering]] family $\{U_i \to c\}$ (where the colimit is the [[limit in a quasi-category|(∞,1)-categorical colimit]] or [[homotopy colimit]]) so that the above [[descent]] condition becomes \begin{displaymath} A(c) \simeq PSh(\lim_\to U_\cdots, A) \simeq \lim_{\leftarrow} A(U_\cdots) = \lim_{\leftarrow} \left( \cdots \stackrel{\to}{\stackrel{\to}{\to}} \prod_{i,j} A(U_i) \times_{A(c)} A(U_j) \stackrel{\to}{\to}\prod_i A(U_i) \right) \,. \end{displaymath} \end{remark} \begin{remark} \label{}\hypertarget{}{} Sometimes [[(∞,1)-sheaves]] are called \textbf{[[∞-stacks]]}, though sometimes the latter term is reserved for [[hypercomplete]] $(\infty,1)$-sheaves and at other times again it refers to [[(∞,2)-sheaves]]. The [[(n,1)-category|(n,1)-categorical]] counting is: \begin{itemize}% \item [[sheaf]] = 0-stack = 0-[[truncated]] $(\infty,1)$-sheaf \item $(2,1)$-sheaf = [[stack]] = 1-truncated $(\infty,1)$-sheaf \item $(3,1)$-sheaf = 2-stack = 2-truncated $(\infty,1)$-sheaf \item etc. \item $(\infty,1)$-sheaf = [[∞-stack]] (or = [[hypercomplete]] $(\infty,1)$-sheaf). \end{itemize} \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{LocAndTopology}{}\subsubsection*{{Localizations and Grothendieck topology}}\label{LocAndTopology} We reproduce the proof that the two characterization in def. \ref{CategoryOfSheaves} above are indeed equivalent. \begin{prop} \label{}\hypertarget{}{} For $C$ an [[(∞,1)-site]], the full [[sub-(∞,1)-category]] of $PSh(C)$ on [[local objects]] with respect to the covering monomorphisms in $PSh(C)$ is indeed a [[topological localization]], and hence $Sh(C)$ is indeed an exact [[reflective sub-(∞,1)-category]] of $PSh(C)$ and hence an [[(∞,1)-topos]]. \end{prop} This is [[Higher Topos Theory|HTT, Prop. 6.2.2.7]] \begin{proof} We must prove that the [[(∞,1)-sheafification]] functor $L \colon PSh(C)\to Sh(C)$ preserves [[finite (∞,1)-limits]]. To do so we give an explicit construction of $L$. Given a presheaf $F\in PSh(C)$, define a new presheaf $F^+$ by the formula \begin{displaymath} F^+(c)={\lim_{\rightarrow}}_U {\lim_{\leftarrow}}_{u\in U} F(u) \end{displaymath} where the colimit is taken over all covering sieves $U$ of $c$; this is called the \emph{[[plus construction]]}. It defines a functor $PSh(C)\to PSh(C)$ and there is an obvious morphism $F\to F^+$ natural in $F$. It is clear that the construction $F\mapsto F^+$ preserves [[finite (∞,1)-limits]], since [[filtered (∞,1)-colimits]] do, and it is easy to see that the map $F\to F^+$ becomes an [[equivalence in an (∞,1)-category|equivalence]] in $Sh(C)$. Given an [[ordinal]] $\alpha$, let $F^{(\alpha)}$ be the $\alpha$-iteration of the [[plus construction]] applied to the presheaf $F$. Then the functor $F\mapsto F^{(\alpha)}$ preserves finite limits and the canonical map $F\to F^{(\alpha)}$ becomes an equivalence in $Sh(C)$. In particular, if $F^{(\alpha)}$ is a sheaf, then $F^{(\alpha)}\simeq L(F)$. Thus, it suffices to show that there exists an ordinal $\alpha$ such that, for every $F\in PSh(C)$, $F^{(\alpha)}$ is a sheaf. Fix $c\in C$ and a covering sieve $U$ of $C$. Given a presheaf $G\in PSh(C/c)$, we define an auxiliary presheaf $Match(U,G)\in PSh(C/c)$ by the formula \begin{displaymath} Match(U,G)(f: d\to c)={\lim_{\leftarrow}}_{u\in f^\ast U}G(u). \end{displaymath} Restriction maps induce a morphism $\theta_G: G\to Match(U,G)$. Since we clearly have $G(u)\stackrel{\sim}{\to} Match(U,G)(u)$ for $u\in U$, the functor $Match(U,-)$ is \emph{idempotent} in the sense that $Match(U,\theta_G)$ and $\theta_{Match(U,G)}$ are (equivalent) equivalences. By definition, $F\in PSh(C)$ is a sheaf if and only if $F(c)\stackrel{\sim}{\to} Match(U,F|_{C/c})(c)$ for every $c\in C$ and every covering sieve $U$ of $c$. Our goal is therefore to find an ordinal $\alpha$ (depending only on the (∞,1)-site $C$) such that, for every $F\in PSh(C)$, the map \begin{displaymath} F^{(\alpha)}(c) \to \Match(U,F^{(\alpha)}|_{C/c})(c) \end{displaymath} is an equivalence. The morphism $G\to G^+$ in $PSh(C/c)$ factors as \begin{displaymath} G\to Match(U,G)\to G^+. \end{displaymath} Applying $Match(U,-)$ to this factorization, we get a commutative diagram \begin{displaymath} \itexarray{ G &\to& Match(U,G) &\to& G^+ \\ \downarrow^{\mathrlap{\theta_G}} && \downarrow^{\mathrlap{\theta_{Match(U,G)}}} && \downarrow^{\mathrlap{\theta_{G^+}}} \\ Match(U,G) &\to& Match(U,Match(U,G)) &\to& Match(U,G^+) } \end{displaymath} in which the map $\theta_{Match(U,G)}$ is an equivalence since $Match(U,-)$ is idempotent. By cofinality, the colimit of the maps $\theta_{G^{(n)}}$ as $n\to\infty$ is an equivalence. Applying this to $G=F|_{C/c}$, we get \begin{displaymath} F^{(\omega)}(c)\stackrel{\sim}{\to} {\lim_{\rightarrow}}_{n\to\infty} Match(U,F^{(n)}|_{C/c})(c). \end{displaymath} This \emph{almost} means that $F^{(\omega)}$ is a sheaf. The problem is that the filtered colimit on the right-hand side need not commute with the limit appearing in the definition of $Match(U,-)$, that is, the canonical map \begin{displaymath} {\lim_{\rightarrow}}_{\alpha \lt \omega} Match(U,F^{(\alpha)}|_{C/c})(c) \to \Match(U,F^{(\omega)}|_{C/c})(c) \end{displaymath} need not be an equivalence. To solve this problem, we choose a cardinal $\kappa$ such that for every $c\in C$ and every covering sieve $U$ of $c$, the functor $Match(U,(-)|_{C/c})(c):Psh(C)\to \infty Grpd$ preserves $\kappa$-filtered colimits. This is possible because $C$ is small and each of these functors, being the composition of the restriction functor $PSh(C)\to PSh(U)$ and the limit functor $PSh(U)\to\infty Grpd$, has a [[left adjoint|left]] [[adjoint (∞,1)-functor]] and is therefore accessible (see [[HTT|HTT Prop. 5.4.7.7]]). Then the above map with $\omega$ replaced by $\kappa$ is an equivalence. For every ordinal $\alpha\lt\kappa$, applying the above to $F^{(\alpha)}$ shows that \begin{displaymath} F^{(\alpha+\omega)}(c)\stackrel{\sim}{\to} {\lim_{\rightarrow}}_{n\to\infty} Match(U,F^{(\alpha+n)}|_{C/c})(c), \end{displaymath} Since $\kappa$ is a limit ordinal, we deduce that $F^{(\kappa)}$ is a sheaf by cofinality. \end{proof} And conversely: \begin{prop} \label{}\hypertarget{}{} \textbf{(equivalence of site structures and categories of sheaves)} For $C$ a [[small (∞,1)-category]], there is a bijective correspondence between structure of an [[(∞,1)-site]] on $C$ and equivalence classes of [[topological localization]]s of $PSh(C)$. \end{prop} This is [[Higher Topos Theory|HTT, prop. 6.2.2.9]]. \begin{lemma} \label{}\hypertarget{}{} For $C$ a small [[(∞,1)-site]] and $Sh(C) \stackrel{\overset{L}{\leftarrow}}{\hookrightarrow} PSh(C)$ the corressponding reflective inclusion of [[(∞,1)-sheaves]] into [[(∞,1)-presheaves]] on $C$ we have that the image under $L$ of a sub-$(\infty,1)$-functor $p : U \to j(c)$ of a [[representable functor|representable]] $j(c)$ is covering precisely if $L(p)$ is an equivalence. \end{lemma} This is [[Higher Topos Theory|HTT, lemma 6.2.2.8]]. \begin{proof} Since $Sh(C)$ is the reflectuive localization of $PSh(C)$ at covering monomorphisms, it is clear that if $p : U \to j(c)$ is covering, then $L(p)$ is an equivalence. To see the converse, form the 0-truncation of $L i$ and conclude as for ordinary sheaves on the [[homotopy category of an (infinity,1)-category|homotopy catgegory]] of $C$. \ldots{} \end{proof} \begin{proof} We have seen in (\ldots{}) that for every structure of an $(\infty,1)$-site on $C$ we obtain a topological localization of the presheaf category, and that this is an injective map from site structures to equivalence classes of sheaf categories. It remains to show that it is also a surjective map, i.e. that every [[topological localization]] of $PSh(C)$ comes from the structure of an [[(∞,1)-site]] on $C$. So consider $S \subset Mor(PSh(C))$ a strongly saturated class of morphisms which s topological (closed under pullbacks). Write $S_0 \subset S$ for the subcalss of those that are [[monomorphism in an (infinity,1)-category|monomorphisms]] of the form $U \to j(c)$. Observe that then $S$ is indeed generated by (is the smallest strongly saturated class containing) $S_0$: since by the [[co-Yoneda lemma]] every object $X \in PSh(C)$ is a colimit $x \simeq {\lim_\to}_k j(\Xi_k)$ over representables. It follows that every monomorphism $f : Y \to X$ is a colimit (in $Func(\Delta[1],PSh(C))$) of those of the form $U \to j(c)$: for consider the pullback diagram \begin{displaymath} \itexarray{ f^* ({\lim_\to}_k \Xi_k) &\to& Y \\ \downarrow^{\mathrlap{\simeq f}} && \downarrow^{\mathrlap{f}} \\ {\lim_\to}_k \Xi_k &\stackrel{\simeq}{\to}& X } \;\;\;\;\; \simeq \;\;\;\;\; \itexarray{ ({\lim_\to}_k f^* \Xi_k) &\to& Y \\ \downarrow^{\mathrlap{\simeq f}} && \downarrow^{\mathrlap{f}} \\ {\lim_\to}_k \Xi_k &\stackrel{\simeq}{\to}& X } \end{displaymath} where the equivalence is due to the fact that we have [[universal colimits]] in $PSh(C)$. This realizes $f$ as a colimit over morphisms of the form $f^* j(\Xi_k) \to j(\Xi_k)$ that are each a pullback of a monomorphism. Since monomorphisms are stable under pullback (see [[monomorphism in an (∞,1)-category]] for details), all these component morphisms are themselves monomorphisms. So every monomorphism in $S$ is generated from $S_0$, but by the assumption that $S$ is topological, it is itself entirely generated from monomorphisms, hence is generated from $S_0$. So far this establishes that evry topological localization of $PSh(C)$ is a localization at a collection of sieves/ subfunctors $U \to j(c)$ of representables. It remains to show that this collection of subfunctors is indeed an Grothendieck topology and hence exhibits on $C$ the structure of an [[(∞,1)-site]]. We check the necessary three axioms: \begin{enumerate}% \item \emph{equivalences cover} -- The equivalences $j(c) \stackrel{\simeq}{\to} j(c)$ belong to $S$ and are monomorphisms, hence belong to $S_0$. \item \emph{pullback of a cover is covering} - Since monomorphisms are stable under pullback, we haave for every $p : U \to j(c)$ in $S$ and every $j(f) : j(d) \to j(c)$ that also the pullback $f^* p$ \begin{displaymath} \itexarray{ f^* U &\to& U \\ \downarrow^{\mathrlap{f^* p}} && \downarrow^{\mathrlap{p}} \\ j(d) &\stackrel{f}{\to}& j(c) } \end{displaymath} is a monomorphism and in $S$, hence in $S_0$. \item \emph{if restriction of a sieve to a cover is covering, then the sieve is covering} -- Let $p : U \to j(c)$ be an arbitrary monomorphism and $f : X \to j(d)$ in $S_0$. Write $X \simeq {\lim_\to}_k \Xi_k$ and consider the pullback \begin{displaymath} \itexarray{ {\lim_\to}_k p^* \Xi_k &\stackrel{p^* f}{\to}& U \\ \downarrow^{{\lim_\to}_k f_k^* p} && \downarrow^{\mathrlap{p}} \\ {\lim_\to}_k \Xi_k &\stackrel{f}{\to}& j(c) } \,, \end{displaymath} where again we made use of the [[universal colimits]] in $PSh(C)$. Now notice that \begin{enumerate}% \item $f$ is in $S$ by assumption; \item $p^* f$ is by pullback stability of $S$; \item each of the $f_k p$ is in $S$ by assumption, hence ${\lim_k f_k^* p}$ is by the fact that $S$ is strongly saturated. \item so by commutativity $p \circ p^*f$ is in $S$. \item finally by 2-out-of-3 this means that $p$ is in $S$. \end{enumerate} \end{enumerate} \end{proof} \hypertarget{OverParacompactSpaces}{}\subsubsection*{{Over paracompact topological spaces}}\label{OverParacompactSpaces} We discuss how $(\infty,1)$-sheaves over a [[paracompact topological space]] are equivalent to topological spaces [[overcategory|over]] $X$. This is the analogue of the 1-categorical statement that [[sheaves]] on $X$ are equivalent to [[etale space]]s over $X$: an etale space over $X$ is one whose [[fiber]]s are [[discrete topological space]], hence 0-[[truncated]] spaces. The [[n-category]] analogy has [[homotopy n-type]]s as fibers. \begin{defn} \label{}\hypertarget{}{} For $Y \to X$ a [[morphism]] in [[Top]], and $U \in Op(X)$ an [[open subset]] of $X$, write \begin{displaymath} Sing_X(Y,U) := Hom_X(U \times \Delta^\bullet, X) \end{displaymath} for the [[simplicial set]] (in fact a [[Kan complex]]) of [[continuous map]]s \begin{displaymath} \itexarray{ U \times \Delta^k && \to && Y \\ & \searrow && \swarrow \\ && X } \end{displaymath} from $U$ times the topological $k$-[[simplex]] $\Delta^k$ into $Y$, that are [[section]]s of $Y \to X$. \end{defn} This is a relative version of the [[singular simplicial complex]] functor. \begin{prop} \label{OverTopModelStructure}\hypertarget{OverTopModelStructure}{} Let $(X, \mathcal{B})$ be a [[topological space]] equipped with a [[base for the topology]] $\mathcal{B}$. There is a [[model category]] structure on the [[over category]] $Top/X$ with weak equivalences and fibration precisely those morphisms $Y \to Z$ over $X$ such that for each $U \in \mathcal{B}$ the induced morphism $Sing_X(Y,U) \to Sing_X(Z,U)$ is a weak equivalence or fibration, respectively, in the standard [[model structure on simplicial sets]]. \end{prop} This is [[Higher Topos Theory|HTT, prop 7.1.2.1]]. Write $(Top/X)^\circ$ for the [[(∞,1)-category]] [[locally presentable (∞,1)-category|presented]] by this model structure. \begin{prop} \label{}\hypertarget{}{} Let $X$ be a [[paracompact topological space]] and write as usual $Sh_{(\infty,1)}(X) := Sh_{(\infty,1)}(Op(X))$ for the $(\infty,1)$-category of $(\infty,1)$-sheaves on the [[category of open subsets]] of $X$; equipped with the canonical structure of a [[site]]. Let $\mathcal{B}$ be the set of \textbf{$F_\sigma$-open subsets} of $X$. This are those [[open subset]]s that are countable unions of [[closed subset]]s, equivalently the 0-sets of [[continuous function]]s $X \to [0,1]$. Let $Top/X^\circ$ be the corresponding $(\infty,1)$-categoty according to the \hyperlink{OverTopModelStructure}{above proposition}. Then $Sing_X(-,-)$ constitutes an [[equivalence of (∞,1)-categories]] \begin{displaymath} Top/X^\circ \simeq Sh_{(\infty,1)}(X) \,. \end{displaymath} \end{prop} This is [[Higher Topos Theory|HTT, corollary 7.1.4.4]]. \hypertarget{DiffToOthers}{}\subsubsection*{{Difference to more general $(\infty,1)$-toposes}}\label{DiffToOthers} The [[(∞,1)-topos]]es that are $(\infty,1)$-categories of sheaves, i.e. that arise by [[topological localization]] from an [[(∞,1)-category of (∞,1)-presheaves]], enjoy a number of special properties over other classes of $(\infty,1)$-toposes, such as notably [[hypercomplete (∞,1)-topos]]es. The following lists these properties. ([[Higher Topos Theory|HTT, section 6.5.4]].) \hypertarget{universal_property}{}\paragraph*{{Universal property}}\label{universal_property} The construction of [[(∞,1)-sheaf]] [[(∞,1)-topos]]es on a given [[locale]] is singled out over the construction of other kinds of $(\infty,1)$-toposes (such as [[hypercomplete (∞,1)-topos]]es) by the following universal property: forming $(\infty,1)$-sheaves is, roughly, [[right adjoint]] to the functor $\tau_{\leq -1}$ that sends each $(\infty,1)$-topos to its underlying [[locale]] of [[subobject]]s of the [[terminal object]]. See [[Higher Topos Theory|HTT, item 1) of section 6.5.4]]. For $X,Y$ two $(\infty,1)$-toposes, write $Geom(X,Y) \subset Func(X,Y)$ for the full [[sub-(∞,1)-category]] of the [[(∞,1)-category of (∞,1)-functors]] on those that are [[geometric morphism]]s. \begin{lemma} \label{}\hypertarget{}{} For $C$ an [[essentially small (∞,1)-category|small]] [[(n,1)-category]] with [[finite (∞,1)-limits]] and equipped with the structure of an [[(∞,1)-site]] and for $Y$ an [[(∞,1)-topos]], the [[truncated|truncation functor]] \begin{displaymath} \tau_{\leq n-1} : Geom(Y, Sh(C)) \to Geom(\tau_{\leq n-1} Y, \tau_{\leq n-1} Sh(C)) \end{displaymath} is an [[equivalence in a quasi-category|equivalence]] (of [[(∞,1)-categories]]). \end{lemma} This is [[Higher Topos Theory|HTT, lemma 6.4.5.6]]. See also [[n-localic (∞,1)-topos]]. \hypertarget{compact_generation}{}\paragraph*{{Compact generation}}\label{compact_generation} \begin{prop} \label{}\hypertarget{}{} Let $X$ be a [[coherent topological space]] and let $Op(X)$ be its [[category of open subsets]] with the standard structure of an [[(∞,1)-site]]. Then $Sh_{(\infty,1)}(X) := Sh_{(\infty,1)}(Op(X))$ is \emph{compactly generated} in that it is generated by [[filtered colimit]]s of [[compact object]]s. Moreover, the compact objects of $Sh_{(\infty,1)}(X)$ are those that are [[stalk]]wise compact objects in [[∞Grpd]] and [[locally constant ∞-stack|locally constant]] along a suitable [[stratification]] of $X$. \end{prop} This is [[Higher Topos Theory|HTT, prop. 6.5.4.4]]. This statement is false for the [[hypercompletion]] of $Sh_{(\infty,1)}(X)$, in general. \hypertarget{NonabelianCohomology}{}\paragraph*{{Nonabelian cohomology}}\label{NonabelianCohomology} For $X$ a [[topological space]], let \begin{displaymath} (LConst \dashv \Gamma) : Sh_{(\infty,1)}(X) \stackrel{\overset{LConst}{\leftarrow}}{\underset{\Gamma}{\to}} \end{displaymath} be the [[global section]]s terminal [[geometric morphism]]. For $A \in \infty Grpd$, the ([[nonabelian cohomology|nonabelian]]) [[cohomology]] of $X$ with coefficients in $A$ is usually defined in [[∞Grpd]] as \begin{displaymath} H(X,A) := \pi_0 Func(Sing X, A) \,, \end{displaymath} where $Sing X$ is the [[fundamental ∞-groupoid]] of $X$. On the other hand, if we send $A$ into $Sh_{(\infty,1)}(X)$ via $LConst$, the there is the \emph{intrinsic} [[cohomology]] of the $(\infty,1)$-topos $Sh_{(\infty,1)}(X)$ \begin{displaymath} H'(X,A) := \pi_0 Sh_{(\infty,1)}(X)(X, LConst A) \,. \end{displaymath} Noticing that $X$ is in fact the [[terminal object]] of $Sh_{(\infty,1)}(X)$ and that $Sh_{(\infty,1)}(X)(X,-)$ is in fact that [[global section]]s functor, this is equivalently \begin{displaymath} \cdots \simeq \pi_0 \Gamma LConst A \,. \end{displaymath} \begin{theorem} \label{}\hypertarget{}{} If $X$ is a [[paracompact space]], then these two definitions of [[nonabelian cohomology]] of $X$ with [[constant ∞-stack|constant coefficients]] $A \in \infty Grpd$ agree: \begin{displaymath} H(X,A) := \pi_0 \infty Grpd(Sing X,A) \simeq Sh_{(\infty,1)}(X)(X,LConst A) \,. \end{displaymath} \end{theorem} This is [[Higher Topos Theory|HTT, theorem 7.1.0.1]]. \hypertarget{models}{}\subsection*{{Models}}\label{models} The topological localizations of an [[(∞,1)-category of (∞,1)-presheaves]] are [[presentable (∞,1)-category|presented]] by the [[Bousfield localization of model categories|left Bousfield localization]] of the global [[model structure on simplicial presheaves]] at the set of [[Cech cover]]s. The [[hypercompletion|hypercomplete]] $(\infty,1)$-sheaf toposes are [[presentable (infinity,1)-category|presented]] by the local Joyal-Jardine [[model structure on simplicial presheaves]]. Detailed discussion of this [[model category]] presentation is at \begin{itemize}% \item [[models for infinity-stack (infinity,1)-toposes|models for (infinity,1)-category of (infinity,1)-sheaves]] . \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[geometric homotopy type theory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The study of simplicial presheaves apparently goes back to \begin{itemize}% \item K. Brown, [[BrownAHT|Abstract Homotopy Theory and Generalized Sheaf Cohomology]] \end{itemize} which considers locally [[Kan complex|Kan]] [[simplicial presheaf|simplicial presheaves]] as a [[category of fibrant objects]]. This was later conceived in terms of a [[model structure on simplicial presheaves]] and on simplicial sheaves by Joyal and Jardine. To\"e{}n summarizes the situation and emphasizes the interpretation in terms of [[∞-stacks]] living in $(\infty,1)$-categories for instance in B. To\"e{}n, \emph{Higher and derived stacks: a global overview} (\href{http://arxiv.org/abs/math/0604504}{arXiv}) . This concerns mostly [[hypercomplete]] $(\infty,1)$-sheaves, though. The full picture in terms of Grothendieck-[[(∞,1)-topos]]es of [[(∞,1)-sheaves]] is the topic of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} . \begin{itemize}% \item localization $(\infty,1)$-functors ($(\infty,1)$-sheafification for the present purpose) are discussed in section 5.2.7; \item local objects ($(\infty,1)$-sheaves for the present purpose) and [[local isomorphism]]s are discussed in section 5.5.4; \item the definition of $(\infty,1)$-topoi of $(\infty,1)$-sheaves is then definition 6.1.0.4 in section 6.1; \item the characterization of $(\infty,1)$-sheaves in terms of [[descent]] is in section 6.1.3 \item the relation between the [[model structure on simplicial presheaves|Brown?Joyal?Jardine model]] and the general story is discussed at length in section 6.5.4 \end{itemize} \end{itemize} An overview is in \begin{itemize}% \item [[Denis-Charles Cisinski]], \emph{Cat\'e{}gories sup\'e{}rieures et th\'e{}orie des topos}, S\'e{}minaire Bourbaki, 21.3.2015, \href{http://www.math.univ-toulouse.fr/~dcisinsk/1097.pdf}{pdf}. \end{itemize} [[!redirects (infinity,1)-category of (infinity,1)-sheaves]] [[!redirects (∞,1)-category of (∞,1)-sheaves]] [[!redirects (infinity,1)-categories of (infinity,1)-sheaves]] [[!redirects (∞,1)-categories of (∞,1)-sheaves]] [[!redirects (∞,1)-sheaf (∞,1)-topos]] [[!redirects (∞,1)-sheaf (∞,1)-toposes]] [[!redirects (∞,1)-sheaf (∞,1)-topoi]] [[!redirects ∞-stack (∞,1)-topos]] [[!redirects ∞-stack (∞,1)-toposes]] [[!redirects ∞-stack (∞,1)-topoi]] [[!redirects (∞,1)-sheaf (∞,1)-category]] [[!redirects (∞,1)-sheaf (∞,1)-categories]] [[!redirects (infinity,1)-sheaf (infinity,1)-category]] [[!redirects (infinity,1)-sheaf (infinity,1)-categories]] [[!redirects (∞,1)-topos of (∞,1)-sheaves]] [[!redirects (∞,1)-toposes of (∞,1)-sheaves]] [[!redirects (infinity,1)-topos of (infinity,1)-sheaves]] [[!redirects (infinity,1)-toposes of (infinity,1)-sheaves]] [[!redirects (∞,1)-sheaf ∞-topos]] [[!redirects (∞,1)-sheaf ∞-toposes]] \end{document}