\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{(infinity,1)-module bundle} [[!redirects (infinity,1)-vector bundle]] \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{bundles}{}\paragraph*{{Bundles}}\label{bundles} [[!include bundles - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{discrete_vector_bundles}{Discrete $(\infty,1)$-vector bundles}\dotfill \pageref*{discrete_vector_bundles} \linebreak \noindent\hyperlink{modules_and_module_bundles}{$\infty$-Modules and $\infty$-Module bundles}\dotfill \pageref*{modules_and_module_bundles} \linebreak \noindent\hyperlink{lines_and_line_bundles}{$\infty$-Lines and $\infty$-line bundles}\dotfill \pageref*{lines_and_line_bundles} \linebreak \noindent\hyperlink{SectionsAndTwistedCohomology}{Sections and twisted cohomology}\dotfill \pageref*{SectionsAndTwistedCohomology} \linebreak \noindent\hyperlink{trivializations_and_orientations}{Trivializations and orientations}\dotfill \pageref*{trivializations_and_orientations} \linebreak \noindent\hyperlink{Structured}{Structured $(\infty,1)$-vector bundles}\dotfill \pageref*{Structured} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of an \emph{$(\infty,1)$-module bundle} is a [[categorification]]/[[homotopy theory|homotopification]] of the notion of a [[module bundle]]/[[vector bundle]], where [[fields]] and [[rings]] are replaced by [[∞-rings]] and [[modules]] by [[∞-modules]]; a central notion in [[parameterized stable homotopy theory]]. Recall that for $k$ a [[field]], a [[vector space]] is a $k$-[[module]], and a [[vector bundle]] over a [[space]] $X$ is classified by a morphism $\alpha : X \to k$[[Mod]] with $k$[[Mod]] regarded as an object in the relevant [[topos]]. For instance for \emph{discrete} or \emph{flat} vector bundles $k Mod$ is the [[category]] [[Vect]] of vector spaces. There is the subcategory $k Line \hookrightarrow k Mod$ of 1-[[dimension]]al $k$-vector bundles, and morphisms that factor as $\alpha : X \to k Line \hookrightarrow k Mod$ are $k$-[[line bundle]]s. In the discrete case the vector space of [[section]]s of the vector bundle classified by $\alpha$ is the [[colimit]] $\lim_\to \alpha$. These statements [[categorification|categorify]] in a straightforward manner to the case where $k$ is generalized to a commutative [[∞-ring]]: an \emph{[[E-∞ ring]]} or \emph{[[ring spectrum]]} . Modules are replaced by [[module spectrum|module spectra]] and colimits by [[homotopy colimit]]s. The resulting notion of $(\infty,1)$-vector bundles plays a central role in many constructions in [[orientation in generalized cohomology]], [[twisted cohomology]] and [[Thom isomorphism]]s. Further generalization of the concept leads to [[(∞,n)-vector bundle]]s: an $(\infty,n)$-module over an [[E-∞-ring]] $K$ is an object of the [[(∞,n)-category]] $(\cdots (K Mod) Mod ) \cdots Mod$, where we are iteratively forming module $(\infty,k)$-categories over the monoidal $(\infty,k-1)$-category of $(\infty,k-1)$-modules, $n$ times. \hypertarget{discrete_vector_bundles}{}\subsection*{{Discrete $(\infty,1)$-vector bundles}}\label{discrete_vector_bundles} We discuss $(\infty,1)$-vector bundles internal to the [[(∞,1)-topos]] [[∞Grpd]] $\simeq$ [[Top]]. Since we are discussing objects with geometric interpretation, we are to think of this as the $(\infty,1)$-topos of \emph{[[discrete ∞-groupoids]]}. Discussion of $\infty$-vector bundles internal to \emph{structured} (non-discrete) $\infty$-groupoids is \hyperlink{Structured}{below}. \hypertarget{modules_and_module_bundles}{}\subsubsection*{{$\infty$-Modules and $\infty$-Module bundles}}\label{modules_and_module_bundles} Assume in the following choices \begin{itemize}% \item $K$ -- an [[E-∞ ring]] \item $A$ -- a $K$-[[algebra spectrum|algebra]], hence an [[A-∞ algebra]] in [[Spec]] equipped with a $\infty$-algebra homomorphism $K \to A$. \end{itemize} Denote \begin{itemize}% \item $A Mod$ -- the [[(∞,1)-category]] of $A$-[[module spectrum|module spectra]]. \end{itemize} \begin{defn} \label{}\hypertarget{}{} For $X$ a [[discrete ∞-groupoid]] (often presented as a [[topological space]]), the [[(∞,1)-category]] of \textbf{$A$-module $\infty$-bundles} over $X$ is the [[(∞,1)-functor (∞,1)-category]] \begin{displaymath} A Mod(X) := Func(X, A Mod) \,. \end{displaymath} \end{defn} In this form this appears as (\hyperlink{ABG}{ABG def. 3.7}). Compare this to the analogous definition at \emph{[[principal ∞-bundle]]}. \begin{remark} \label{}\hypertarget{}{} If $X$ is regarded as a [[topological space]] then the corresponding [[discrete ∞-groupoid]] is $\Pi X$, the [[fundamental ∞-groupoid]] of $X$ and the morphism encoding an $K$-module bundle over $X$ is reads \begin{displaymath} \alpha : \Pi(X) \to A Mod \,. \end{displaymath} This assignment of $A$-modules to points in $X$, of $A$-module morphism to paths in $X$ etc. may be regarded as the [[higher parallel transport]] of the (unique and flat, due to [[discrete ∞-groupoid|discreteness]]) [[connection on an ∞-bundle]] on $\alpha$. Equivalently, this morphism may be regarded as an [[∞-representation]] of $\Pi(X)$. Notaby if $X = B G$ is the [[classifying space]] of a [[discrete group]] or [[discrete ∞-group]], a $K$-module $\infty$-bundle over $X$ is the same as an [[∞-representation]] of $G$ on $A Mod$. \end{remark} \hypertarget{lines_and_line_bundles}{}\subsubsection*{{$\infty$-Lines and $\infty$-line bundles}}\label{lines_and_line_bundles} \begin{defn} \label{}\hypertarget{}{} Write \begin{displaymath} A Line \hookrightarrow A Mod \end{displaymath} for the [[full sub-(∞,1)-category]] on the \emph{$A$-lines} : on those $A$-modules that are equivalent to $A$ as an $A$-module. The full subcatgeory of $A Mod(X)$ on morphisms factoring through this inclusion we call the $(\infty,1)$-catgeory of \textbf{$A$-line $\infty$-bundles}. \end{defn} This appears as (\hyperlink{ABG}{ABG def. 3.12}), (\hyperlink{ABGHR08}{ABGHR 08, 7.5}). \begin{defn} \label{}\hypertarget{}{} Let $A$ be an [[A-∞ algebra|A-∞]] [[ring spectrum]]. For $\Omega^\infty A$ the underlying [[A-∞ space]] and $\pi_0 \Omega^\infty A$ the ordinary [[ring]] of connected components, writ $(\pi_0 \Omega^\infty A)^\times$ for its [[group of units]]. Then the [[∞-group of units]] of $A$ is the [[(∞,1)-pullback]] $GL_1(A)$ in \begin{displaymath} \itexarray{ GL_1(A) &\to& \Omega^\infty A \\ \downarrow && \downarrow \\ (\pi_0 \Omega^\infty A)^\times &\to& \pi_0 \Omega^\infty A } \,. \end{displaymath} \end{defn} \begin{prop} \label{}\hypertarget{}{} There is an [[equivalence in an (∞,1)-category|equivalence]] of [[∞-groups]] \begin{displaymath} GL_1(A) \simeq Aut_{A Line}(A) \end{displaymath} of the [[∞-group of units]] of $A$ with the [[automorphism ∞-group]] of $A$, regarded canonically as a module over itself. Since every $A$-line is by definition equivalent to $A$ as an $A$-module, there is accordingly, an [[equivalence of (∞,1)-categories]], in fact of [[∞-groupoids]]: \begin{displaymath} A Line \simeq B GL_1(A) \simeq B Aut(A) \end{displaymath} that identifies $A Line$ as the [[delooping]] [[∞-groupoid]] of either of these two [[∞-groups]]. \end{prop} This appears in (\hyperlink{ABG}{ABG, 3.6}) (\href{http://arxiv.org/pdf/1002.3004v2.pdf#page=10}{p. 10}). See also (\hyperlink{ABGHR08}{ABGHR 08, section 6}). \begin{remark} \label{}\hypertarget{}{} This means that every $A$-line $\infty$-bundle is canonically [[associated ∞-bundle|associated]] to a $GL_1(A)$-[[principal ∞-bundle]] over $X$ which is [[moduli space|modulated]] by a map $X \to B GL_1(A)$. \end{remark} \begin{defn} \label{}\hypertarget{}{} A $GL_1(A)$-[[principal ∞-bundle]] on $X$ is also called a \textbf{[[twisted cohomology|twist]]} -- or better: a \textbf{[[local coefficient ∞-bundle]]} -- for $A$-[[generalized (Eilenberg-Steenrod) cohomology|cohomology]] on $X$. \end{defn} For the moment see \emph{[[twisted cohomology]]} for more on this. \hypertarget{SectionsAndTwistedCohomology}{}\subsubsection*{{Sections and twisted cohomology}}\label{SectionsAndTwistedCohomology} \begin{defn} \label{}\hypertarget{}{} The $A$-module of (dual) [[sections]] of an $(\infty,1)$-module bundle $f : X \to A Mod$ is the [[(∞,1)-colimit]] over this functor \begin{displaymath} X^f := \lim_\to (X \stackrel{\alpha}{\to} A Mod) \,. \end{displaymath} The corresponding \emph{spectrum of sections} is the $A$-dual \begin{displaymath} \Gamma(f) := Mod_A(X^f, A) \,. \end{displaymath} \end{defn} This is (\hyperlink{ABG}{ABG, def. 4.1}) and (\hyperlink{ABG}{ABG, p. 15}), (\hyperlink{ABGII}{ABG11, remark 10.16}). \begin{remark} \label{}\hypertarget{}{} For $f$ an $A$-line bundle $\Gamma(f)$ is called in (\hyperlink{ABGHR08}{ABGHR 08, def. 7.27, remark 7.28}) the \textbf{[[Thom spectrum|Thom A-module]]} of $f$ and written $M f$. \end{remark} Because for $A = S$ the [[sphere spectrum]], $M f$ is indeed the classical [[Thom spectrum]] of the spherical fibration given by $f$: \begin{prop} \label{}\hypertarget{}{} For $K = S$ the [[sphere spectrum]], $f : X \to K Line = S Line$ an $S$-line bundle -- hence a spherical fibration, and $A$ any other $\infty$-ring with canonical inclusion $S \to A$, the Thom $A$-module of the composite $X \stackrel{f}{\to} S Mod \to A Mod$ is the classical [[Thom spectrum]] of $f$ tensored with $A$: \begin{displaymath} \Gamma(X \stackrel{f}{\to} S Line \to A Line \to A Mod) \simeq X^f \wedge_S A \,. \end{displaymath} \end{prop} This is (\hyperlink{ABGHR08}{ABGHR 08, theorem 4.5}). \hypertarget{trivializations_and_orientations}{}\subsubsection*{{Trivializations and orientations}}\label{trivializations_and_orientations} \begin{defn} \label{}\hypertarget{}{} For $f : X \to A Line$ an $A$-line $\infty$-bundle, its [[∞-groupoid]] of \textbf{trivializations} is the $\infty$-groupoid of lifts \begin{displaymath} \itexarray{ && * \\ & \nearrow & \downarrow \\ X &\stackrel{f}{\to}& A Line } \,. \end{displaymath} For $K \to A$ the canonical inclusion and $f : X \to K Line$ a $K$-line bundle, we say that an \textbf{$A$-orientation} of $f$ is a trivialization of the associated $A$-line bundle $X \stackrel{f}{\to} K Line \to A Line$. \end{defn} That this encodes the notion of [[orientation in generalized cohomology|orientation in A-cohomology]] is around (\hyperlink{ABGHR08}{ABGHR 08, 7.32}). \begin{cor} \label{ThomModuleInOrientedCase}\hypertarget{ThomModuleInOrientedCase}{} Every trivialization/orientation of an $A$-line $\infty$-bundle $f : X \to A Line$ induces an equivalence \begin{displaymath} \Gamma(f) \simeq (\Sigma^\infty X )\wedge A \end{displaymath} of the $A$-module of sections of $f$ / the [[Thom spectrum|Thom A-module]] of $f$ with the [[homology|generalized A-homology]]-spectrum of $X$: \begin{displaymath} \pi_\bullet \Gamma(f) \simeq H_\bullet(X,A) \,. \end{displaymath} \end{cor} This appears as (\hyperlink{ABGHR08}{ABGHR 08, cor. 7.34}). Therefore if $f$ is \emph{not} trivializable, we may regard its $A$-module of sections as encoding $f$-[[twisted cohomology|twisted A-cohomology]]: \begin{defn} \label{}\hypertarget{}{} For $f : X \to A Line$ an $A$-line $\infty$-bundle, the $f$-\textbf{[[twisted cohomology|twisted A-homology]] of $A$ is} \begin{displaymath} H_\bullet^f(X, A) := \pi_\bullet(\Gamma(f)) := \pi_\bullet(M f) \,. \end{displaymath} The \textbf{$f$-[[twisted cohomology|twisted A-cohomology]] is} \begin{displaymath} H^\bullet_f(X,A) := \pi_0 A Mod(M f, \Sigma^\bullet A) \,. \end{displaymath} \end{defn} \hypertarget{Structured}{}\subsection*{{Structured $(\infty,1)$-vector bundles}}\label{Structured} We discuss now $(\infty,1)$-vector bundles in more general [[(∞,1)-toposes]]. (\ldots{}) \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \begin{itemize}% \item The [[string topology]] operations on a compact [[smooth manifold]] $X$ may be understood as arising from a [[sigma-model]] [[quantum field theory]] with [[target space]] $X$ whose [[background gauge field]] is a flat $A$-line $\infty$-bundle $(P,\nabla)$ which is $A$-oriented over $X$, hence trivializabe over $X$ (for instance for $A = H \mathbb{Q}$ the [[Eilenberg-MacLane spectrum]] this may be the sphereical fibration of [[Thom spectrum|Thom spaces]] induced from the [[tangent bundle]] if the manifold is [[oriented]] in the ordinary sense). By prop. \ref{ThomModuleInOrientedCase} this implies that the space of [[state]]s of the $\sigma$-model is the $A$-homology spectrum $\Gamma(P) \simeq X \edge A$ of $X$, and that for every suitable [[surface]] $\Sigma$ with incoming and outgoing boundary components $\partial_{in} \Gamma \stackrel{in}{\to} \Gamma \stackrel{out}{\leftarrow} \partial_{out} \Gamma$ the [[mapping space]] [[span]] \begin{displaymath} X^{\partial_{in} \Gamma} \stackrel{X^{in}}{\leftarrow} X^{\Gamma} \stackrel{X^{out}}{\rightarrow} X^{\partial_{out} \Gamma} \end{displaymath} acts by [[path integral as a pull-push transform]] on these spaces of states \begin{displaymath} (X^{out})_* (X^{in})^! : H_\bullet(X^{\partial_{in} \Gamma},A) \to H_\bullet(X^{\partial_{out} \Gamma}, A) \,. \end{displaymath} \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[twisted cohomology]] \item [[Picard ∞-stack]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} A systematic discussion of discrete $(\infty,1)$-module bundles has a precursor in \begin{itemize}% \item [[Matthew Ando]], [[Michael Hopkins]], [[Charles Rezk]], \emph{Multiplicative orientations of KO-theory and the spectrum of topological modular forms}, 2010 (\href{http://www.math.uiuc.edu/~mando/papers/koandtmf.pdf}{pdf}) \end{itemize} (discussing the [[string orientation of tmf]]) and is then discussed in more detail in the triple of articles \begin{itemize}% \item [[Matthew Ando]], [[Andrew Blumberg]], [[David Gepner]], [[Michael Hopkins]], [[Charles Rezk]], \emph{Units of ring spectra and Thom spectra} (\href{http://arxiv.org/abs/0810.4535}{arXiv:0810.4535}) \item [[Matthew Ando]], [[Andrew Blumberg]], [[David Gepner]], \emph{Twists of K-theory and TMF}, in Robert S. Doran, Greg Friedman, [[Jonathan Rosenberg]], \emph{Superstrings, Geometry, Topology, and $C^*$-algebras}, Proceedings of Symposia in Pure Mathematics \href{http://www.ams.org/bookstore-getitem/item=PSPUM-81}{vol 81}, American Mathematical Society (\href{http://arxiv.org/abs/1002.3004}{arXiv:1002.3004}) \item [[Matthew Ando]], [[Andrew Blumberg]], [[David Gepner]], \emph{Parametrized spectra, multiplicative Thom spectra, and the twisted Umkehr map} (\href{http://arxiv.org/abs/1112.2203}{arXiv:1112.2203}) \end{itemize} The last of these explains the relation to \begin{itemize}% \item [[Peter May|May]], Sigurdsson, \emph{[[Parametrized Homotopy Theory]]} \end{itemize} A streamlined version of (\hyperlink{ABGHR08}{ABGHR 08}) appears as \begin{itemize}% \item [[Matthew Ando]], [[Andrew Blumberg]], [[David Gepner]], [[Michael Hopkins]], [[Charles Rezk]], \emph{An $\infty$-categorical approach to $R$-line bundles, $R$-module Thom spectra, and twisted $R$-homology} (\href{http://arxiv.org/abs/1403.4325}{arXiv:1403.4325}) \end{itemize} Lecture notes on these articles are in \begin{itemize}% \item Ben Knudsen, Scott Slinker, Paul VanKoughnett, Brian Williams, and [[Dylan Wilson]], \emph{Thom spectra reading course} (\href{http://www.math.northwestern.edu/~bwill/thom/}{web}) \end{itemize} [[!redirects (∞,1)-vector bundle]] [[!redirects (infinity,1)-vector bundles]] [[!redirects (∞,1)-vector bundles]] [[!redirects (∞,1)-module bundle]] [[!redirects (∞,1)-module bundles]] [[!redirects (infinity,1)-module bundle]] [[!redirects (infinity,1)-module bundles]] [[!redirects (∞,1)-line]] [[!redirects (∞,1)-lines]] [[!redirects (infinity,1)-line]] [[!redirects (infinity,1)-lines]] [[!redirects (∞,1)-vector space]] [[!redirects (∞,1)-vector spaces]] [[!redirects (infinity,1)-vector space]] [[!redirects (infinity,1)-vector spaces]] [[!redirects (∞,1)-line bundle]] [[!redirects (∞,1)-line bundles]] [[!redirects (infinity,1)-line bundle]] [[!redirects (infinity,1)-line bundles]] [[!redirects ∞-line bundle]] [[!redirects ∞-line bundles]] [[!redirects infinity-line bundle]] [[!redirects infinity-line bundles]] \end{document}