\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{(infinity,1)-monad} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{MonadicityTheorem}{Barr-Beck monadicity theorem}\dotfill \pageref*{MonadicityTheorem} \linebreak \noindent\hyperlink{HomotopyCoherence}{Homotopy coherence}\dotfill \pageref*{HomotopyCoherence} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of $(\infty,1)$-monad is the [[vertical categorification]] of that of [[monad]] from the context of [[category|categories]] to that of [[(∞,1)-category|(∞,1)-categories]]. They relate to [[(∞,1)-adjunctions]] as [[monads]] relate to [[adjunctions]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{MonadicityTheorem}{}\subsubsection*{{Barr-Beck monadicity theorem}}\label{MonadicityTheorem} \begin{prop} \label{CanonicalMonadicAdjunction}\hypertarget{CanonicalMonadicAdjunction}{} Given an [[(∞,1)-monad]] $T$ on an [[(∞,1)-category]] $\mathcal{C}$, there is an [[(∞,1)-adjunction]] \begin{displaymath} (F \dashv U) \;\colon\; Alg_{\mathcal{C}}(T) \stackrel{\overset{F}{\leftrightarrow}}{\underset{U}{\longrightarrow}} \mathcal{C} \,, \end{displaymath} where $Alg_{\mathcal{C}}(T)$ is the (Eilenberg-Moore) [[(∞,1)-category of algebras over an (∞,1)-monad|(∞,1)-category of algebras over the (∞,1)-monad]] and where $U$ is the [[forgetful functor]] that remembers the underlying [[object]] of $\mathcal{C}$. \end{prop} This appears in (\hyperlink{RiehlVerity13}{Riehl-Verity 13, def. 6.1.15}). The following is the refinement to [[(∞,1)-category theory]] of the classical [[Barr-Beck monadicity theorem]] which states sufficient conditions for recognizing an [[(∞,1)-adjunction]] as being canonically [[equivalence|equivalent]] to the one in prop. \ref{CanonicalMonadicAdjunction}, hence to be a \emph{[[monadic adjunction]]}. \begin{theorem} \label{InfinityBarrBeckTheorem}\hypertarget{InfinityBarrBeckTheorem}{} Let $(L \dashv R)$ a pair of [[adjoint (∞,1)-functors]] such that \begin{enumerate}% \item $R$ is a [[conservative (∞,1)-functor]]; \item the [[domain]] [[(∞,1)-category]] of $R$ admits [[geometric realization]] ([[(∞,1)-colimit]]) of [[simplicial objects in an (∞,1)-category|simplicial objects]]; \item and $R$ preserves these \end{enumerate} then for $T \coloneqq R \circ L$ the essentially unique $(\infty,1)$-monad structure on the composite endofunctor, there is an [[equivalence of (∞,1)-categories]] identifying the [[domain]] of $R$ with the [[(∞,1)-category of algebras over an (∞,1)-monad]] $Alg_{\mathcal{C}}(T)$ over $T$ and $R$ itself as the canonical [[forgetful functor]] $U$ from prop. \ref{CanonicalMonadicAdjunction}. \end{theorem} This appears as ([[Higher Algebra|Higher Algebra, theorem 6.2.0.6, theorem 6.2.2.5]], \hyperlink{RiehlVerity13}{Riehl-Verity 13, section 7}) \hypertarget{HomotopyCoherence}{}\subsubsection*{{Homotopy coherence}}\label{HomotopyCoherence} \begin{remark} \label{}\hypertarget{}{} An [[(∞,1)-adjunction]] $(L \dashv R) \colon \mathcal{C} \leftrightarrow \mathcal{D}$ is uniquely determined already by its image in the [[homotopy 2-category]] (\hyperlink{RiehlVerity13}{Riehl-Verity 13, theorem 5.4.14}). This is not in general true for $(\infty,1)$-monads $T \colon \mathcal{C} \to \mathcal{C}$. As these are [[monoids in an (∞,1)-category]] of [[endomorphisms]], they in general have relevant [[coherence]] data all the way up in degree. However, by the previous statement and the monadicity theorem \ref{InfinityBarrBeckTheorem}, for $(\infty,1)$-monads given via specified [[(∞,1)-adjunctions]] as $T \simeq R \circ L$ are determined by less (further) coherence data ([[Higher Algebra|Higher Algebra, remark 6.2.0.7, prop. 6.2.2.3]], \hyperlink{RiehlVerity13}{Riehl-Verity 13, page 6}). (Of course there is, instead, extra data/information carried by the choice of $\mathcal{D}$.) This should justify the [[simplicial model category]]-theoretic discussion in (\hyperlink{Hess10}{Hess 10}) in [[(∞,1)-category theory]]. \end{remark} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[higher monadic descent]] \item [[algebraic theory]] / [[Lawvere theory]] / [[(∞,1)-algebraic theory]] \item [[monad]] / [[2-monad]]/ [[doctrine]] / \textbf{$(\infty,1)$-monad} \begin{itemize}% \item [[idempotent (∞,1)-monad]] \item [[modal type theory]] \end{itemize} \item [[operad]] / [[(∞,1)-operad]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A general treatment of $(\infty,1)$-monads in [[(∞,1)-category theory]] is in \begin{itemize}% \item [[Jacob Lurie]], section 3 of \emph{Noncommutative algebra} (\href{http://arxiv.org/abs/math/0702299}{math.CT/0702299}) \end{itemize} later absorbed as \begin{itemize}% \item [[Jacob Lurie]], section 6.2 of \emph{[[Higher Algebra]]} \end{itemize} More explict discussion in terms of [[quasi-categories]] and [[simplicial sets]] is in \begin{itemize}% \item [[Emily Riehl]], [[Dominic Verity]], \emph{Homotopy coherent adjunctions and the formal theory of monads} (\href{http://arxiv.org/abs/1310.8279}{arXiv:1310.8279}) \end{itemize} Some homotopy theory of ([[enriched functor|enriched]]) monads on ([[simplicial model category|simplicial]]) [[model categories]] is discussed (with an eye towards [[higher monadic descent]]) in \begin{itemize}% \item [[Kathryn Hess]], \emph{A general framework for homotopic descent and codescent}, \href{http://arxiv.org/abs/1001.1556}{arXiv/1001.1556} \end{itemize} [[!redirects (∞,1)-monad]] [[!redirects (infinity,1)-monads]] [[!redirects (∞,1)-monads]] [[!redirects (∞,1)-comonad]] [[!redirects (∞,1)-comonads]] [[!redirects (infinity,1)-comonad]] [[!redirects (infinity,1)-comonads]] \end{document}