\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{(infinity,1)-operad} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{in_terms_of_dendroidal_sets}{In terms of dendroidal sets}\dotfill \pageref*{in_terms_of_dendroidal_sets} \linebreak \noindent\hyperlink{InTermsOfInfinityCategoriesOfOperators}{In terms of $(\infty,1)$-categories of operators}\dotfill \pageref*{InTermsOfInfinityCategoriesOfOperators} \linebreak \noindent\hyperlink{BasicDefinitions}{Basic definitions}\dotfill \pageref*{BasicDefinitions} \linebreak \noindent\hyperlink{ModelForinfOpera}{Model for $(\infty,1)$-categories of operators}\dotfill \pageref*{ModelForinfOpera} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation}{Relation between the two definitions}\dotfill \pageref*{relation} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \emph{$(\infty,1)$-operad} is to that of [[(∞,1)-category]] as [[operad]] is to [[category]]. So, roughly, an $(\infty,1)$-operad is an algebraic structure that has for each given type of input and one type of output an [[∞-groupoid]] of operations that take these inputs to that output. There is a fairly evident notion of [[∞-algebra over an (∞,1)-operad]]s. Examples include \begin{itemize}% \item [[E-∞ algebra]]s \item [[L-∞ algebra]]s; \item [[A-∞ algebra]]s. \end{itemize} $(\infty,1)$-Operads form an [[(∞,2)-category]] [[(∞,1)Operad]]. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Two models for $(\infty,1)$-operads exist to date, one by [[Denis-Charles Cisinski|Cisinski]]--[[Ieke Moerdijk|Moerdijk]]--[[Ittay Weiss|Weiss]], the other by [[Jacob Lurie|Lurie]]. It is expected though not yet entirely proved that the two are equivalent ([[Higher Algebra]], draft, Remark 2.0.0.8). The first one models $(\infty,1)$-operads as [[dendroidal set]]s in close analogy to (in fact as a generalization of how) [[simplicial set]]s model [[(∞,1)-category|(∞,1)-categories]]. The second models the [[(∞,1)-category]] version of a [[category of operators]] of an operad. \hypertarget{in_terms_of_dendroidal_sets}{}\subsubsection*{{In terms of dendroidal sets}}\label{in_terms_of_dendroidal_sets} Here [[simplicial set]]s are generalized to [[dendroidal set]]s. The theory of $(\infty,1)$-operads is then formulated in terms of dendroidal sets in close analogy to how the theory of [[(∞,1)-category|(∞,1)-categories]] is formulated in terms of [[simplicial set]]s. There is a [[model structure on dendroidal sets]] whose fibrant objest are the \textbf{quasi-operad}s in direct analogy to the notion of [[quasi-category]]. So the [[model structure on dendroidal sets]] is a [[presentable (∞,1)-category|presention]] of the [[(∞,1)-category]] of $(\infty,1)$-operads. It is [[Quillen equivalence|Quillen equivalent]] to the standard [[model structure on operads]] enriched over [[Top]] or [[sSet]]. Therefore, conversely, the traditional homotopy-theoretic constructions on topological and chain operads (such as cofibrant [[resolution]]s in order to present homtopy algebras such as [[A-∞ algebra]]s, [[L-∞ algebra]]s, [[homotopy BV-algebra]]s and the like) are also indeed presentations of $(\infty,1)$-operads. \hypertarget{InTermsOfInfinityCategoriesOfOperators}{}\subsubsection*{{In terms of $(\infty,1)$-categories of operators}}\label{InTermsOfInfinityCategoriesOfOperators} Every [[operad]] $A$ encodes and is encoded by its [[category of operators]] $C_A$. In the approach to $(\infty,1)$-operators described below, the notion of category of operators is generalized to an [[(∞,1)-category]] of operators. In this approach an $(\infty,1)$-operad $C^\otimes$ is regarded as an [[(∞,1)-category]] $C$ -- the unary part of the $(\infty,1)$-operad to be described-- with extra structure that determines [[(∞,1)-functor]]s $C^{\times n} \to C$. This and the conditions on these are encoded in requiring that $C^\otimes$ is an $(\infty,1)$-functor $C^\otimes \to \Gamma$ over [[Segal Gamma-category|Segal's category]] $\Gamma$ of pointed finite sets, satisfying some conditions. In particular, any [[symmetric monoidal (∞,1)-category]] yields an example of an $(\infty,1)$-operad in this sense. In fact, symmetric monoidal $(\infty,1)$-categories can be \emph{defined} as $(\infty,1)$-operads such that the functor $C^\otimes \to \Gamma$ is a [[coCartesian fibration]]. (For the moment, see [[monoidal (infinity,1)-category]] for more comments and references on higher operads in this context.) This is the approach described in (\hyperlink{LurieCommutative}{LurieCommutative}) \hypertarget{BasicDefinitions}{}\paragraph*{{Basic definitions}}\label{BasicDefinitions} We are to generalize the following construction from [[categories]] to [[(∞,1)-categories]]. \begin{defn} \label{}\hypertarget{}{} For $\mathcal{O}$ a [[symmetric multicategory]], write $\mathcal{O}^\otimes \to FinSet^{*/}$ for its [[category of operators]]. Here $\mathcal{O}^\otimes$ is the [[category]] whose \begin{itemize}% \item [[objects]] are finite sequences ([[tuples]]) of objects of $\mathcal{O}$; \item [[morphisms]] $(X_1, \cdots, X_{n_1}) \to (Y_1, \cdots, Y_{n_2})$ are given by a morphism $\alpha \colon \langle n_1\rangle \to \langle n_2\rangle$ in $FinSet_*$ together with a collection of [[multimorphisms]] \begin{displaymath} \left\{ \phi_j \in \mathcal{O}\left( \left\{ X_i\right\}_{i \in \alpha^{-1}\left\{j\right\}} , Y_j \right) \right\}_{1 \leq j \leq n_2} \,. \end{displaymath} \end{itemize} The [[functor]] $p \colon \mathcal{O}^\otimes \to FinSet^{*/}$ is the evident [[forgetful functor]]. \end{defn} In (\hyperlink{Lurie}{Lurie}) this is construction 2.1.1.7. This motivates the following definition of the generalization of this situation to [[(∞,1)-category theory]]. \begin{defn} \label{FinSetPointed}\hypertarget{FinSetPointed}{} Write $FinSet^{*/}$ for the category of [[pointed object|pointed]] [[finite set]] ([[Segal Gamma-category|Segal's Gamma-category]]). For $n \in \mathbb{N}$ we write \begin{displaymath} \langle n\rangle \coloneqq {*} \coprod [n] \in FinSet^{*/} \end{displaymath} for the [[pointed set]] with $n+1$ elements. A morphism in $FinSet^{*/}$ \begin{itemize}% \item is called an \textbf{[[inert morphism]]} if it is a surjection, and an [[injection]] on those elements that are not sent to the base point. That is, the preimage of every non-base point is a singleton. \item called an \textbf{[[active morphism]]} if only the basepoint goes to the basepoint. \end{itemize} For $n \in \mathbb{N}$ and $1 \leq i \leq n$ write \begin{displaymath} \rho^i \colon \langle n\rangle \to \langle 1\rangle \end{displaymath} for the inert morphism that sends all but the $i$th element to the basepoint. Notice that for each $n \in \mathbb{N}$ there is a unique [[active morphism]] $\langle n\rangle \to \langle 1\rangle$. \end{defn} (\hyperlink{Lurie}{Lurie, def. 2.1.1.8}) \begin{defn} \label{InfinityOperadByCategoryOfOperators}\hypertarget{InfinityOperadByCategoryOfOperators}{} The \textbf{$(\infty,1)$-category of operators of an $(\infty,1)$-operad} is a morphism \begin{displaymath} p \colon \mathcal{O}^\otimes \to FinSet^{*/} \end{displaymath} of [[quasi-categories]] such that the following conditions hold: \begin{enumerate}% \item For every [[inert morphism]] in $FinSet^{*/}$ and every [[object]] over it, there is a lift to a $p$-[[coCartesian morphism]] in $\mathcal{O}^\otimes$. In particular, for $f \colon \langle n_1\rangle \to \langle n_2\rangle$ inert, there is an induced [[(∞,1)-functor]] \begin{displaymath} f_! \colon \mathcal{O}^\otimes_{\langle n_1\rangle} \to \mathcal{O}^\otimes_{\langle n_2\rangle} \,. \end{displaymath} \item The coCartesian lifts of the inert projection morphisms induce an equivalence of [[derived hom-spaces]] in $\mathcal{O}^{\otimes}$ between maps into multiple objects and the products of the maps into the separete objects: For $f \colon \langle n_1 \rangle \to \langle n_2 \rangle$ write $\mathcal{O}^\otimes_f(-,-) \hookrightarrow \mathcal{O}^\otimes(-,-)$ for the components of the [[derived hom-space]] covering $f$, then the $(\infty,1)$-functor \begin{displaymath} \mathcal{O}^\otimes_f(C_1,C_2) \to \underset{1 \leq k \leq n_2}{\prod} \mathcal{O}^\otimes_{\rho^i\circ f}(C_1,(C_2)_i) \end{displaymath} induced as above is an [[equivalence of infinity-groupoids|equivalence]]. \item For every finite collection of objects $C_1, \cdots c_n \in \mathcal{O}^\otimes_{\langle 1\rangle}$ there exists a multiobject $C \in \mathcal{O}^\otimes_{\langle n\rangle}$ and a collection of $p$-[[coCartesian morphisms]] $\{C \to C_i\}$ covering $\rho^i$. Equivalently (given the first two conditions): for all $n \in \mathbb{N}$ the $(\infty,1)$-functors $\{(\rho^i)_!\}_{1 \leq i \leq n}$ induce an [[equivalence of (∞,1)-categories]] \begin{displaymath} \mathcal{O}^\otimes_{\langle n\rangle} \to (\mathcal{O}^\otimes_{\langle 1\rangle})^{\times^n} \end{displaymath} \end{enumerate} \end{defn} (\hyperlink{Lurie}{Lurie, def. 2.1.1.10, remark 2.1.1.14}) \begin{remark} \label{}\hypertarget{}{} The conditions in def. \ref{InfinityOperadByCategoryOfOperators} mean that $p \colon \mathcal{O}^\otimes \to FinSet^{*/}$ encodes \begin{enumerate}% \item an [[(∞,1)-category]] $\mathcal{O} \coloneqq \mathcal{O}^\otimes_{\langle 1\rangle}$; \item for each $n \in \mathbb{N}$ an $n$-ary operation given by the $(\infty,1)$-functor \begin{displaymath} \mathcal{O}^{n} = (\mathcal{O}^\otimes_{\langle 1\rangle})^{\times n} \simeq \mathcal{O}^{\otimes}_{\langle n\rangle} \to \mathcal{O}^\otimes_{\langle 1\rangle} = \mathcal{O} \end{displaymath} induced by the unique [[active morphism]] $\langle n\rangle \to \langle 1\rangle$ \item a coherently associative multicomposition of these operations. \end{enumerate} \end{remark} \begin{remark} \label{}\hypertarget{}{} The notion of def. \ref{InfinityOperadByCategoryOfOperators} may also be called a \textbf{symmetric $(\infty,1)$-multicategory} or \textbf{colored $(\infty,1)$-operad}. The \emph{colors} are the [[objects]] of $\mathcal{O}$. \end{remark} We now turn to the definition of [[homomorphisms]] of $(\infty,1)$-operads. \begin{defn} \label{InertMorphismsInInfinityOperad}\hypertarget{InertMorphismsInInfinityOperad}{} Given an $(\infty,1)$-operad $p \colon \mathcal{O}^\otimes \to FinSet^{*/}$ as in def. \ref{InfinityOperadByCategoryOfOperators}, a [[morphism]] $f$ in $\mathcal{O}^\otimes$ is called an \textbf{inert morphism} if \begin{enumerate}% \item $p(f)$ is an [[inert morphism]] in $FinSet^{*/}$ by def. \ref{FinSetPointed}; \item $f$ is a $p$-[[coCartesian morphism]]. \end{enumerate} \end{defn} \begin{defn} \label{MorphismOfInfinityOperads}\hypertarget{MorphismOfInfinityOperads}{} A \textbf{[[morphism of (∞,1)-operads]]} is a map between their [[(∞,1)-categories of operators]] over $FinSet^{*/}$ that preserves the inert morphisms of def. \ref{InertMorphismsInInfinityOperad}. \end{defn} Morphisms of operads $\mathcal{O}_1 \to \to \mathcal{O}_2$ can be understood equivalently as exhibiting an $\mathcal{O}_1$-[[algebra over an operad|algebra]] in $\mathcal{O}_2$. Therefore: \begin{defn} \label{}\hypertarget{}{} For $\mathcal{O}_1, \mathcal{O}_2$ to $(\infty,1)$-operads, write \begin{displaymath} Alg_{\mathcal{O}_1}(\mathcal{O}_2) \hookrightarrow qCat_{/FinSet^{*/}}(\mathcal{O}_1, \mathcal{O}_2) \end{displaymath} for the full [[sub-(∞,1)-category]] of the [[(∞,1)-functor (∞,1)-category]] on those that are [[morphisms of (∞,1)-operads]] by def. \ref{MorphismOfInfinityOperads}. \end{defn} (\hyperlink{Lurie}{Lurie, def. 2.1.2.7}). We also have the notion of \begin{itemize}% \item \emph{[[fibration of (∞,1)-operads]]}; \item \emph{[[coCartesian fibration of (∞,1)-operads]]}. \end{itemize} See there for more details. \hypertarget{ModelForinfOpera}{}\paragraph*{{Model for $(\infty,1)$-categories of operators}}\label{ModelForinfOpera} There is a [[model category]] that [[presentable (infinity,1)-category|presents]] the [[(∞,1)-category]] $(\infty,1)Cat_{Oper}$ of $(\infty,1)$-categories of operations. \begin{prop} \label{}\hypertarget{}{} There exists a \begin{itemize}% \item [[proper model category|left proper]] \item [[combinatorial model category|combinatorial]] \end{itemize} [[model category]] $\mathcal{P} Op_{(\infty,1)}$ \begin{itemize}% \item whose underlying [[category]] has \begin{itemize}% \item [[object]]s are [[marked simplicial set]] $S$ equipped with a morphism $S \to N(FinSet_*)$ such that marked edges map to inert morphisms in $FinSet_*$ (those for which the preimage of the marked point contains just the marked point) \item [[morphism]]s are morphisms of [[marked simplicial set]]s $S \to T$ such that the triangle \begin{displaymath} \itexarray{ S &&\to&& T \\ & \searrow && \swarrow \\ && N(FinSet_*) } \end{displaymath} commutes; \end{itemize} \item which is canonically an [[SSet]]-[[enriched category]]; \item and whose [[model category|model structure]] is given by \begin{itemize}% \item cofibrations are those morphisms whose underlying morphisms of [[simplicial set]]s ate cofibrations, hence [[monomorphism]]s \item weak equivalences are those morphisms $S \to T$ such that for all $A \to N(FinSet_*)$ that are $(\infty,1)$-categories of operations by the above definition, the morphism of [[SSet]]-[[hom object]]s \begin{displaymath} \mathcal{P}Op_\infty(T,A) \to \mathcal{P}Op_\infty(S,A) \end{displaymath} is a homotopy equivalence of simplicial sets. \item an object is fibrant if and only if it is an $(\infty,1)$-category of operations, by the above definition. \end{itemize} \end{itemize} \end{prop} This is prop 1.8 4 in \begin{itemize}% \item [[Jacob Lurie]], \emph{Commutative algebra} (\href{http://www.math.harvard.edu/~lurie/papers/DAG-III.pdf}{pdf}) \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} We list some examples of $(\infty,1)$-operads incarnated as their [[(∞,1)-categories of operators]] by def. \ref{InfinityOperadByCategoryOfOperators}. The first basic examples to follow are in fact all given by [[1-categories]] [[category of operators|of operators]]. \begin{example} \label{}\hypertarget{}{} The [[identity]] functor on $FinSet^{*/}$ exhibits an $(\infty.1)$-operad. This is the \textbf{[[commutative operad]]} \begin{displaymath} Comm^\otimes = FinSet^{*/} \stackrel{id}{\to} FinSet^{*/} \,. \end{displaymath} The [[(∞,1)-algebras over an (∞,1)-operad]] over this $(\infty,1)$-operad are [[E-∞ algebras]]. \end{example} \begin{example} \label{}\hypertarget{}{} The \textbf{[[associative operad]]} has $Assoc^\otimes$ the category whose objects are the natural numbers, whose $n$-ary operations are labeled by the [[total orders]] on $n$ elements, equivalently the elements of the [[symmetric group]] $\Sigma_n$, and whose composition is given by forming consecutive total orders in the obvious way. The [[(∞,1)-algebras over an (∞,1)-operad]] over this $(\infty,1)$-operad are [[A-∞ algebras]] \end{example} In (\hyperlink{Lurie}{Lurie}) this is remark 4.1.1.4. \begin{example} \label{}\hypertarget{}{} The \textbf{[[operad for modules over an algebra]]} $LM$ is the [[colored operad|colored]] [[symmetric operad]] whose \begin{itemize}% \item [[objects]] are two elements, to be denoted $\mathfrak{a}$ and $\mathfrak{n}$; \item [[multimorphisms]] $(X_i)_{i = 1}^n \to Y$ form \begin{itemize}% \item if $Y = \mathfrak{a}$ and $X_i = \mathfrak{a}$ for all $i$ then: the set of [[linear orders]] on $n$ elements, equivalently the elements of the [[symmetric group]] $\Sigma_n$; \item if $Y = \mathfrak{n}$ and exactly one of the $X_i = \mathfrak{n}$ then: the set of linear order $\{i_1 \lt \cdots \lt i_n\}$ such that $X_{i_n} = \mathfrak{n}$ \item otherwise: the empty set; \end{itemize} \item [[composition]] is given by composition of linear orders as for the [[associative operad]]. \end{itemize} The [[(∞,1)-algebras over an (∞,1)-operad]] over this $(\infty,1)$-operad are pairs consisting of [[A-∞ algebras]] with [[(∞,1)-modules]] over them. \end{example} In (\hyperlink{Lurie}{Lurie}) this appears as def. 4.2.1.1. \begin{defn} \label{}\hypertarget{}{} The \textbf{[[operad for bimodules over algebras]]} $BMod$ is the [[colored operad|colored]] [[symmetric operad]] whose \begin{itemize}% \item [[objects]] are three elements, to be denoted $\mathfrak{a}_-, \mathfrak{a}_+$ and $\mathfrak{n}$; \item [[multimorphisms]] $(X_i)_{i = 1}^n \to Y$ form \begin{itemize}% \item if $Y = \mathfrak{a}_-$ and all $X_i = \mathfrak{a}_-$ then: the set of [[linear orders]] of $n$ elements; \item if $Y = \mathfrak{a}_*$ and all $X_i = \mathfrak{a}_*$ then again: the set of [[linear orders]] of $n$ elements; \item if $Y = \mathfrak{n}$: the set of linear orders $\{i_1 \lt \cdots \lt i_n\}$ such that there is exactly one index $i_k$ with $X_{i_k} = \mathfrak{n}$ and $X_{i_j} = \mathfrak{a}_-$ for all $j \lt k$ and $X_{i_j} = \mathfrak{a}_+$ for all $k \gt k$. \end{itemize} \item [[composition]] is given by the composition of linear orders as for the [[associative operad]]. \end{itemize} The [[(∞,1)-algebras over an (∞,1)-operad]] over this $(\infty,1)$-operad are pairs consisting of two [[A-∞ algebras]] with an [[(∞,1)-bimodule]] over them. \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation}{}\subsubsection*{{Relation between the two definitions}}\label{relation} At the time of this writing there is no discussion in ``the literature'' of the relation between the definition of $(\infty,1)$-operads in terms of dendroidal sets (Cisinski, Moerdijk, Weiss) and $(\infty,1)$-categories of operators (Lurie). The following are some tentative observations. - [[Urs Schreiber|Urs]] update: meanwhile this has been worked out by some people. Results should appear in preprint form soon. There is an obvious way to regard a [[tree]] as an $(\infty,1)$-category of operators: \begin{defn} \label{}\hypertarget{}{} \textbf{(dendroidal $(\infty,1)$-category of operators)} Let \begin{displaymath} \omega : \Omega \hookrightarrow Op \stackrel{C_{(-)}}{\to} Cat/FinSet_* \stackrel{N}{\to} \mathcal{P}Op_{(\infty,1)} \end{displaymath} be the dendroidal object given by the following composition: \begin{itemize}% \item $\Omega \hookrightarrow Op$ is the functor from the [[tree category]] $\Omega$ to the category of symmetric colored [[operad]]s (over [[Set]]) that sends a tree to the operad freely generated from it; \item $Op \stackrel{C_{(-)}}{\to} Cat/FinSet_*$ sends an [[operad]] to its [[category of operators]]; \item $Cat/FinSet_* \stackrel{N}{\to} \mathcal{P}Op_{(\infty,1)}$ takes the [[nerve]] of this category, regarded as a [[marked simplicial set]] over $N(FinSet_*)$, whose marked edges are the inert morphisms in the category of operations. \end{itemize} \end{defn} Following the general pattern of [[nerve and realization]], we get: \begin{defn} \label{}\hypertarget{}{} \textbf{(dendroidal nerve of Lurie-$\infty$-operad)} The functor \begin{displaymath} N_d := Hom_{\mathcal{P}Op_{(\infty,1)}}(\omega(-), -): \mathcal{P}Op_{(\infty,1)} \to dSet \end{displaymath} that sends a [[marked simplicial set]] $A \to N(FinSet_*)$ to the [[dendroidal set]] which sends a [[tree]] $T$ to the set of morphisms of $\omega(T)$ into $A$ \begin{displaymath} N_d(A) : T \mapsto Hom_{\mathcal{P}Op_{(\infty,1)}}(\omega(T), A) \end{displaymath} is the \textbf{dendroidal nerve} of $A$. \end{defn} One expects that $N_d$ induces a [[Quillen adjunction]] and indeed a [[Quillen equivalence]] between the above model category structure on $\mathcal{P}Op_{(\infty,1)}$ and the [[model structure on dendroidal sets]]. The following is as far as I think I can prove aspects of this. -[[Urs Schreiber|Urs]]. \begin{prop} \label{}\hypertarget{}{} The dendroidal nerve functor has the following properties: \begin{itemize}% \item it is the [[right adjoint]] of a [[SSet]]-[[enriched functor|enriched]] [[adjunction]] \begin{displaymath} C_{(-)} : dSet \stackrel{\leftarrow}{\to} \mathcal{P}Op_{(\infty,1)} : N_d \end{displaymath} \item it sends fibrant objects to fibrant objects i.e. it sends $(\infty,1)$-categories of operations to $(\infty,1)$-operads in their incarnation as ``quasi-operads''; \item it sends objects $\pi : A \to N(FinSet_*)$ that come from grouplike [[symmetric monoidal (infinity,1)-category|symmetric monoidal]] [[∞-groupoid]]s to fully Kan dendroidal sets (that have the extension property with respect to all horns) \item it sends objects $\pi : A \to N(FinSet_*)$ that come from [[symmetric monoidal (infinity,1)-category|symmetric monoidal (∞,1)-categories]] to dendroidal sets that have the extension property with respect to at least one outer horn $\Lambda_{v} T$ for $v \in T$ an $n$-corolla, for all $n \in \mathbb{N}$. \item its [[left adjoint]] sends cofibrations to cofibrations and acyclic cofibrations with cofibrant domain to acyclic cofibrations. \end{itemize} \end{prop} \begin{proof} \textbf{respect for fibrant objects}. If $A \to N(FinSet_*)$ is fibrant, then in particual $A$ is a [[weak Kan complex]] hence has the extension property with respect to all inner [[horn]] inclusions of [[simplex|simplices]]. We need to show that this implies that $N_d(A)$ has the extension property with respect to all inner horn inclusions of [[tree]]s. By an (at the moment unpublished) result by [[Ieke Moerdijk|Moerdijk]], right [[lifting property]] with respect to inner horn inclusions of trees is equivalend to right lifting property with respect to inclusions of [[spine]]s of trees: the union over all the corollas in a tree. For this the extension property means that if we find a collection $\{C_{k_i} \to N_d(A)\} = Sp(T)$ of corollas in $N_d(A)$ that match at some inputs and output, then these can be composed to an image $T \to N_d(A)$ of the corresponding tree $T$ in $N_d(A)$. An image of $T$ in $N_d(A)$ is an image of $\omega(T)$ in $A$. In the [[category of operators]] $\omega(A)$ every tree may be represented as the composite of a sequence of morphisms each of which consists of precisely one of the corollas $C_{k_i}$ in parallel to identity morphisms. This way gluing the tree from the corollas is a matter of composing a sequence of edges in $A$. But this is guaranteed to be possible if $A$ is a [[weak Kan complex]]. \textbf{symmetric monoidal product and outer horn lifting} As described at [[cartesian morphism]], an edge $f : \Delta^1 \to A$ in $A$ is coCartesian if for all diagrams \begin{displaymath} \itexarray{ \Delta^{0,1} \\ \downarrow & \searrow^f \\ \Lambda^n_0 &\to & A \\ \downarrow && \downarrow \\ \Delta^n &\to& N(FinSet_*) } \end{displaymath} of 0-horn lifting problems where the first edge of the horn is $f$ itself, there exists a lift \begin{displaymath} \itexarray{ \Delta^{0,1} \\ \downarrow & \searrow^f \\ \Lambda^n_0 &\to & A \\ \downarrow &\nearrow & \downarrow \\ \Delta^n &\to& N(FinSet_*) } \,. \end{displaymath} For $f$ the parallel application of an $n$-corolla with a collection of identity morphisms this implies that any outer horn $\Lambda_v T \to N_d(A)$ for which the vertex $v : C_n \to N_d(A)$ maps to $f$, the dendroidal set $N_d(A)$ has the extension property with respect to the inclusion $\Lambda_d T \hookrightarrow T$. \textbf{the left adjoint and its respect for cofibrations} By general nonsense the [[left adjoint]] to $N_d$ is given by the [[coend]] \begin{displaymath} C_{(-)} : dSet \to \mathcal{P}Op_{(\infty,1)} \end{displaymath} \begin{displaymath} C_P = \int^{T \in \Omega} \omega(T) \cdot P(T) \,, \end{displaymath} where in the integrand we have the tautological [[copower|tensoring]] of $\mathcal{P}Op_{(\infty,1)}$ over [[Set]]. Notice that $\omega : \Omega \to \mathcal{P}Op_{(\infty,1)}$ is an [[SSet]]-[[enriched functor]] for the ordinary category $\Omega$ regarded as a simplicially enriched category by the canonical embedding $Set \hookrightarrow SSet$. Therefore this adjunction $F \dashv N_d$ is defined entirely in [[SSet]]-[[enriched category theory]] and hence is a simplicial adjunction. The [[model structure on dendroidal sets]] has a set of [[cofibrantly generated model category|generating cofibrations]] given by the boundary inclusions of trees. $\partial \Omega[T] \hookrightarrow \Omega[T]$. Tese evidenly map to monomorphisms of underlying simplicial sets under $F$, hence to cofibrations. For $f : P \hookrightarrow Q$ an acyclic cofibration with cofibrant domain, we need to check that $C_f : C_X \to C_Y$ is a weak equivalence in $\mathcal{P}Op_{(\infty,1)}$. This is by definition the case if for every fibrant object $A$ the morphism \begin{displaymath} \mathcal{P}Op_{(\infty,1)}(C_Y,A) \to \mathcal{P}Op_{(\infty,1)}(C_X,A) \end{displaymath} is a weak equivalence in the standard [[model structure on simplicial sets]]. By the simplicial adjunction $F \dashv N_d$ this is equivalent to \begin{displaymath} dSet(f,N_d(A)) : dSet(Y,N_d(A)) \to dSet(X,N_d(A)) \end{displaymath} being a weak equivalence. By the above $N_d(A)$ is fibrant. By section 8.4 of the lecture notes on dendroidal sets cited at [[model structure on dendroidal sets]] a morphism between cofibrant dendroidal sets is a weak equivalence precisely if homming it into any fibrant dendroidal set produces an equivalence of homotopy categories. Since $f$ is a weak equivalence between cofibrant objects by assumption, it follows that indeed $dSet(f,N_d(A))$ is a weak equivalence for all fibrant $A$. \begin{quote}% (AHM, or does it? there is a prob here, but I need to run now\ldots{}) \end{quote} Hence $C_f$ is a weak equivalence. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[table - models for (∞,1)-operads]] \item [[algebraic theory]] / [[Lawvere theory]] / [[(∞,1)-algebraic theory]] \item [[monad]] / [[(∞,1)-monad]] \item [[operad]] / \textbf{$(\infty,1)$-operad}, [[model structure on operads]] \begin{itemize}% \item [[morphism of (∞,1)-operads]], [[fibration of (∞,1)-operads]] \item [[generalized (∞,1)-operad]], [[family of (∞,1)-operads]] \item [[algebra over an (∞,1)-operad]], [[model structure on algebras over an operad]] \begin{itemize}% \item [[module over an algebra over an (∞,1)-operad]], [[model structure on modules over an algebra over an operad]] \end{itemize} \item [[coherent (∞,1)-operad]] \end{itemize} \item [[operadic (∞,1)-Grothendieck construction]] \item [[cohomology of operads]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The formulation in terms of [[dendroidal sets]] is due to \begin{itemize}% \item [[Ieke Moerdijk]] [[Ittay Weiss]], \emph{Dendroidal sets} (\href{http://cat.inist.fr/?aModele=afficheN&cpsidt=20087314}{web}) \item [[Denis-Charles Cisinski]], [[Ieke Moerdijk]], \emph{Dendroidal sets as models for homotopy operads} (\href{http://arxiv.org/abs/0902.1954}{arXiv}) . \end{itemize} Here are two blog entries on talks on this stuff: \begin{itemize}% \item \href{http://golem.ph.utexas.edu/category/2009/02/dendroidal_sets.html}{Dendroidal Sets and Infinity-Operads} \item \href{http://golem.ph.utexas.edu/category/2009/02/moerdijk_on_infinityoperads.html}{Moerdijk on Infinity Operads} \end{itemize} The formulation in terms of an $(\infty,1)$-version of the [[category of operators]] is introduced in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Commutative Algebra]]} (\href{http://www.math.harvard.edu/~lurie/papers/DAG-III.pdf}{pdf}) \end{itemize} and further discussed in \begin{itemize}% \item \emph{[[Ek-Algebras]]} . \end{itemize} Now in section 2 of the textbook \begin{itemize}% \item \emph{[[Higher Algebra]]} \end{itemize} The equivalence between the [[dendroidal set]]-formulation and the one in terms of $(\infty,1)$-categories of operators is shown in \begin{itemize}% \item [[Gijs Heuts]], [[Vladimir Hinich]], [[Ieke Moerdijk]], \emph{The equivalence between Lurie's model and the dendroidal model for infinity-operads} (\href{http://arxiv.org/abs/1305.3658}{arXiv:1305.3658}) \end{itemize} Further equivalence to Barwick's complete Segal operads is discussed in \begin{itemize}% \item Hongyi Chu, [[Rune Haugseng]], [[Gijs Heuts]], \emph{Two models for the homotopy theory of $\infty$-operads} (\href{https://arxiv.org/abs/1606.03826}{arXiv:1606.03826}) \end{itemize} For an account in terms of \emph{analytic} [[monads]], that is, monads that are cartesian (multiplication and unit transformations are cartesian) and the underlying endofunctor preserves sifted colimits and wide pullbacks (or equivalently all weakly contractible limits), see \begin{itemize}% \item [[David Gepner]], [[Rune Haugseng]], [[Joachim Kock]], \emph{∞-Operads as Analytic Monads}, (\href{https://arxiv.org/abs/1712.06469}{arXiv:1712.06469}) \end{itemize} [[!redirects (∞,1)-operad]] [[!redirects (∞,1)-operads]] [[!redirects (infinity,1)-operads]] \end{document}