\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{(infinity,1)-pullback} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{incarnations}{Incarnations}\dotfill \pageref*{incarnations} \linebreak \noindent\hyperlink{in_quasicategories}{In quasi-categories}\dotfill \pageref*{in_quasicategories} \linebreak \noindent\hyperlink{QuasiCatPastingLaw}{Pasting law}\dotfill \pageref*{QuasiCatPastingLaw} \linebreak \noindent\hyperlink{in_model_categories}{In model categories}\dotfill \pageref*{in_model_categories} \linebreak \noindent\hyperlink{in_derivators}{In derivators}\dotfill \pageref*{in_derivators} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{fiber_sequence}{Fiber sequence}\dotfill \pageref*{fiber_sequence} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{in_homotopy_type_theory}{In homotopy type theory}\dotfill \pageref*{in_homotopy_type_theory} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An \textbf{$(\infty,1)$-pullback} is a [[limit in an (∞,1)-category]] $\mathcal{C}$ over a [[diagram]] of the shape \begin{displaymath} \{a \to c \leftarrow b\} \to \mathcal{C} \,. \end{displaymath} In other words it is a [[cone]] \begin{displaymath} \itexarray{ A \times_C B &\to& B \\ \downarrow &\cong\swArrow& \downarrow \\ A &\to& C } \end{displaymath} which is [[universal property|universal]] among all such cones in the $(\infty,1)$-categorical sense. This is the analog in [[(∞,1)-category theory]] of the notion of [[pullback]] in [[category theory]]. \hypertarget{incarnations}{}\subsection*{{Incarnations}}\label{incarnations} \hypertarget{in_quasicategories}{}\subsubsection*{{In quasi-categories}}\label{in_quasicategories} Let $\mathcal{C}$ be a [[quasi-category]]. Recall the notion of [[limit in a quasi-category]]. The non-degenerate cells of the [[simplicial set]] $\Delta[1] \times \Delta[1]$ obtained as the [[cartesian product]] of the simplicial 1-[[simplex]] with itself look like \begin{displaymath} \itexarray{ (0,0) &\to& (1,0) \\ \downarrow &\searrow& \downarrow \\ (0,1) &\to& (1,1) } \end{displaymath} A \textbf{square} in a [[quasi-category]] $C$ is an image of this in $C$, i.e. a morphism \begin{displaymath} s : \Delta[1] \times \Delta[1] \to C \,. \end{displaymath} The simplicial square $\Delta[1]^{\times 2}$ is [[isomorphism|isomorphic]], as a [[simplicial set]], to the [[join of simplicial sets]] of a 2-[[horn]] with the point: \begin{displaymath} \Delta[1] \times \Delta[1] \simeq \{v\} \star \Lambda[2]_2 = \left( \itexarray{ v &\to& 1 \\ \downarrow &\searrow& \downarrow \\ 0 &\to& 2 } \right) \end{displaymath} and \begin{displaymath} \Delta[1] \times \Delta[1] \simeq \Lambda[2]_0 \star \{v\} = \left( \itexarray{ 0&\to& 1 \\ \downarrow &\searrow& \downarrow \\ 2 &\to& v } \right) \,. \end{displaymath} If a square $\Delta[1] \times \Delta[1] \simeq \Lambda[2]_0 \star \{v\} \to C$ exhibits $\{v\} \to C$ as a [[limit in a quasi-category|quasi-categorical limit]] over $F : \Lambda[2]_0 \to C$, we say the limit \begin{displaymath} v := \lim_\leftarrow F := F(1) \prod_{F(0)} F(2) \end{displaymath} is [[generalized the|the]] \textbf{quasi-categorical pullback} of the diagram $F$. \hypertarget{QuasiCatPastingLaw}{}\paragraph*{{Pasting law}}\label{QuasiCatPastingLaw} We have the following quasi-categorical analog of the familiar \href{http://ncatlab.org/nlab/show/pullback#Pasting}{pasting law of pullbacks} in ordinary [[category theory]]: A [[pasting]] diagram of two squares is a morphism \begin{displaymath} \sigma : \Delta[2] \times \Delta[1] \to \mathcal{c} \,. \end{displaymath} Schematically this looks like \begin{displaymath} \itexarray{ a &\to& b &\to& c \\ \downarrow && \downarrow && \downarrow \\ d &\to& e &\to& f } \end{displaymath} in $\mathcal{C}$. \begin{uprop} \textbf{(pasting law for quasi-categorical pullbacks)} If the right square is a pullback diagram in $\mathcal{C}$, then the left square is precisely if the outer square is. \end{uprop} This is [[Higher Topos Theory|HTT, lemma 4.4.2.1]] \begin{proof} Consider the diagram inclusions \begin{displaymath} \left( \itexarray{ && && c \\ && && \downarrow \\ d &\to& e &\to& f } \right) \;\;\to\;\; \left( \itexarray{ && b &\to& c \\ && \downarrow && \downarrow \\ d &\to& e &\to& f } \right) \;\;\leftarrow\;\; \left( \itexarray{ && b \\ && \downarrow \\ d &\to& e } \right) \end{displaymath} and the induced diagram of [[over quasi-categories]] \begin{displaymath} \mathcal{C}_{/\sigma(c,d,f)} \stackrel{\phi}{\leftarrow} \mathcal{C}_{/\sigma(b,c,d,e,f)} \stackrel{\psi}{\to} \mathcal{C}_{/\sigma(b,d,e)} \,. \end{displaymath} Notice that by definition of [[limit in a quasi-category]] the quasi-categorical pullback $\sigma(c) \times_{\sigma(f)} \sigma(d)$ is [[generalized the|the]] [[terminal object in a quasi-category|terminal object]] in $\mathcal{C}_{/\sigma(c,d,f)}$, while $\sigma(d) \times_{\sigma(e)} \sigma(b)$ is the terminal object in $\mathcal{C}_{/\sigma(b,d,e)}$. The strategy now is to show that both these morphisms $\phi$ and $\psi$ are acyclic [[Kan fibration]]s. That will imply that these terminal objects coincide as objects of $\mathcal{C}$. First notice that the inclusion \begin{displaymath} \left( \itexarray{ && b \\ && \downarrow \\ d &\to& e } \right) \;\; \to \;\; \left( \itexarray{ && b &\to& c \\ && \downarrow && \downarrow \\ d &\to& e &\to& f } \right) \end{displaymath} is a [[left anodyne morphism]], being the composite of [[pushout]]s of left [[horn]] inclusions \begin{displaymath} \begin{aligned} \left( \itexarray{ && b \\ && \downarrow \\ d &\to& e } \right) & \to \left( \itexarray{ && b &\to& c \\ && \downarrow && \\ d &\to& e } \right) \\ & \to \left( \itexarray{ && b &\to& c \\ && \downarrow && \downarrow \\ d &\to& e && f } \right) \\ & \to \left( \itexarray{ && b &\to& c \\ && \downarrow &\searrow& \downarrow \\ d &\to& e && f } \right) \\ & \to \left( \itexarray{ && b &\to& c \\ && \downarrow &\searrow& \downarrow \\ d &\to& e &\to& f } \right) \end{aligned} \,. \end{displaymath} We could also prove this by showing that this functor is [[homotopy final functor|homotopy initial]] using the characterization in terms of slice categories, and then invoking the theorem of [[HTT]] 4.1.1.3(4) which says (in dual form) that an inclusion of simplicial sets is homotopy initial if and only if it is left anodyne. One of the is that restriction of [[over quasi-categories]] along left anodyne morphisms produces an acyclic [[Kan fibration]]. This shows the desired statement for $\psi$. To see that $\phi$ is also an acyclic fibration observe that $\phi$ can be factored as \begin{displaymath} \mathcal{C}_{/\sigma(c,d,f)} \leftarrow \mathcal{C}_{/\sigma(c,d,e,f)} \leftarrow \mathcal{C}_{/\sigma(b,c,d,e,f)} \end{displaymath} Observe that $\mathcal{C}_{/\sigma(c,d,e,f)}\leftarrow\mathcal{C}_{/\sigma(b,c,d,e,f)}$ fits into a pullback diagram \begin{displaymath} \itexarray{ \mathcal{C}_{/\sigma(c,d,e,f)} & \leftarrow & \mathcal{C}_{/\sigma(b,c,d,e,f)} \\ \downarrow & & \downarrow \\ \mathcal{C}_{/\sigma(c,e,f)} & \leftarrow & \mathcal{C}_{/\sigma(b,c,e,f)} } \end{displaymath} and hence is an acyclic Kan fibration since $\mathcal{C}_{/\sigma(c,e,f)} \leftarrow \mathcal{C}_{/\sigma(b,c,e,f)}$ is one, on account of the fact that the square \begin{displaymath} \itexarray{ \sigma(b) & \to & \sigma(c) \\ \downarrow & & \downarrow \\ \sigma(e) & \to & \sigma(f) } \end{displaymath} is a pullback in $\mathcal{C}$. Finally, $\mathcal{C}_{/\sigma(c,d,f)} \leftarrow \mathcal{C}_{/\sigma(c,d,e,f)}$ is a trivial fibration since \begin{displaymath} \itexarray{ \left( \itexarray{ & & c \\ & & \downarrow \\ d & \to & f } \right) & \to & \left( \itexarray{ & & & & c \\ & & & & \downarrow \\ d & \to & e & \to & f } \right) } \end{displaymath} is left anodyne; clearly this is a pushout of $(d\to f)\to (d\to e\to f)$ and so it suffices to show that $\Delta^{\{0,2\}}\to \Delta^{\{0,1,2\}}$ is left anodyne. But this map factors as $\Delta^{\{0,2\}}\to \Lambda^2_0 \to \Delta^{\{0,1,2\}}$ and clearly $\Delta^{\{0,2\}}\to \Lambda^2_0$ is left anodyne since it is a pushout of $\Delta^{\{0\}}\to \Delta^{\{0,1\}}$. \end{proof} \hypertarget{in_model_categories}{}\subsubsection*{{In model categories}}\label{in_model_categories} \begin{itemize}% \item [[homotopy pullback]] \end{itemize} \hypertarget{in_derivators}{}\subsubsection*{{In derivators}}\label{in_derivators} \begin{itemize}% \item [[pullback in a derivator]] \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{fiber_sequence}{}\subsubsection*{{Fiber sequence}}\label{fiber_sequence} If $\mathcal{C}$ has a [[terminal object]] and $* \to C \in \mathcal{C}$ is a [[pointed object]], then the \textbf{fiber} or \textbf{$(\infty,1)$-kernel} of a morphisms $f : B \to C$ is the $(\infty,1)$-pullback \begin{displaymath} \itexarray{ ker(f) &\to& * \\ \downarrow && \downarrow \\ B &\stackrel{f}{\to}& C } \,. \end{displaymath} For more on this see [[fiber sequence]]. \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{in_homotopy_type_theory}{}\subsubsection*{{In homotopy type theory}}\label{in_homotopy_type_theory} A formalization of homotopy pullbacks in [[homotopy type theory]] is [[Coq]]-coded in \begin{itemize}% \item [[Guillaume Brunerie]], \emph{\href{https://github.com/guillaumebrunerie/HoTT/blob/master/Coq/Limits/Pullbacks.v}{Hott/Coq/Limits/Pullbacks.v}} \end{itemize} [[!redirects (∞,1)-pullback]] [[!redirects (infinity,1)-pullbacks]] [[!redirects (∞,1)-pullbacks]] [[!redirects (∞,1)-fiber product]] [[!redirects (∞,1)-fiber products]] [[!redirects (infinity,1)-fiber product]] [[!redirects (infinity,1)-fiber products]] \end{document}