\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{(infinity,1)-site} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{of_sieves}{Of sieves}\dotfill \pageref*{of_sieves} \linebreak \noindent\hyperlink{of_coverages}{Of coverages}\dotfill \pageref*{of_coverages} \linebreak \noindent\hyperlink{of_sites}{Of sites}\dotfill \pageref*{of_sites} \linebreak \noindent\hyperlink{incarnations_and_models}{Incarnations and models}\dotfill \pageref*{incarnations_and_models} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The structure of an $(\infty,1)$-site on an [[(∞,1)-category]] $C$ is precisely the data encoding an [[(∞,1)-category of (∞,1)-sheaves]] \begin{displaymath} Sh(C) \hookrightarrow PSh(C) \end{displaymath} inside the [[(∞,1)-category of (∞,1)-presheaves]] on $C$. The notion is the analog in [[(∞,1)-category]] theory of the notion of a [[site]] in 1-[[category theory]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The definition of $(\infty,1)$-sites parallels that of 1-categorical [[site]]s closely. In fact the structure of an $(\infty,1)$-site on an $(\infty,1)$-category is equivalent to that of a 1-categorical site on its [[homotopy category of an (infinity,1)-category|homotopy category]] (see below). \begin{udefn} \textbf{($(\infty,1)$-Grothendieck topology)} A \textbf{[[sieve]] in} an [[(∞,1)-category]] $C$ is a full [[sub-(∞,1)-category]] $D \subset C$ which is closed under precomposition with morphisms in $C$. A \textbf{sieve on} an [[object]] $c \in C$ is a sieve in the [[over quasi-category|overcategory]] $C_{/c}$. Equivalently, a sieve on $c$ is an [[equivalence class]] of [[monomorphism in an (infinity,1)-category|monomorphisms]] $U \to j(c)$ in the [[(∞,1)-category of (∞,1)-presheaves]] $PSh(C)$, with $j : C \to PSh(C)$ the [[(∞,1)-Yoneda embedding]]. (See below for the proof of this equivalence). For $S$ a sieve on $c$ and $f : d \to c$ a [[morphism]] into $c$, we take the \textbf{pullback sieve} $f^* S$ on $d$ to be that spanned by all those morphisms into $d$ that become equivalent to a morphism in $S$ after postcomposition with $f$. A \textbf{[[Grothendieck topology]]} on the $(\infty,1)$-category $C$ is the specification of a collection of sieves on each object of $C$ -- called the \textbf{covering sieves} , subject to the following conditions: \begin{enumerate}% \item \emph{the trivial sieve covers} -- For each object $c \in C$ the overcategory $C_{/c}$ regarded as a maximal subcategory of itself is a covering sieve on $c$. Equivalently: the monomorphism $Id : j(c) \to j(c)$ covers. \item \emph{the pullback of a sieve covers} -- If $S$ is a covering sieve on $c$ and $f : d \to c$ a morphism, then the pullback sieve $f^* S$ is a covering sieve on $d$. Equivalently, the [[pullback]] \begin{displaymath} \itexarray{ f^* U &\to& U \\ \downarrow && \downarrow \\ d &\stackrel{f}{\to}& c } \end{displaymath} in $PSh(C)$ is covering. \item \emph{a sieve covers if its pullbacks cover} -- For $S$ a covering sieve on $c$ and $T$ any sieve on $c$, if the pullback sieve $f^* T$ for every $f \in S$ is covering, then $T$ itself is covering. \end{enumerate} An $(\infty,1)$-category equipped with a Grothendieck topology is an \textbf{$(\infty,1)$-site}. \end{udefn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{of_sieves}{}\subsubsection*{{Of sieves}}\label{of_sieves} \begin{ulemma} A sieve $S'$ on $c$ that contains a covering sieve $S \subset S'$ is itself covering. \end{ulemma} \begin{proof} For every $f : d \to c$ an object of $S \subset C_{/c}$, the pullback sieve $f^* S'$ equals the pullback sieve $f^* S$. So it covers $d$ by the second axiom on sieves. So by the third axiom $S'$ itself is covering. \end{proof} \begin{uproposition} There is a natural bijection between sieves on $c$ in $C$ and equivalence class of [[monomorphism in an (infinity,1)-category|monomorphisms]] $U \to j(C)$ in $PSh(C)$. \end{uproposition} This is [[Higher Topos Theory|HTT, prop. 6.2.2.5]]. \begin{proof} First observe that equivalence classes of $(-1)$-[[truncated]] object of $PSh(C_{/c})$ are in bijection with sieves on $c$: An $(\infty,1)$-presheaf $F$ is $(-1)$-truncated if its value on any object is either the empty [[∞-groupoid]] $\emptyset$ or a [[contractible]] $\infty$-groupoid. The full subcategory of $C_{/c}$ on those objects on which $F$ takes a contractible value is evidently a sieve (because there is no morphism from a contractible to the empty $\infty$-groupoid). Conversely, given a sieve $S$ on $c$ we obtain a (-1)-truncated presheaf fixed by the demand that it takes the value $* = \Delta[0] \in \infty Grpd$ on those objects that are in $S$, and $\emptyset$ otherwise. Now, as described at we have an equivalence \begin{displaymath} PSh(C_{/c}) \simeq PSh(C)_{/j(c)} \,. \end{displaymath} Under this equivalence our bijection above maps to the statement that there is a bijection between sieves on $c$ and equivalence class of $(-1)$-[[truncated]] objects in $PSh(C)_{/j (c)}$. But such a (-1)-truncated object is precisely a [[monomorphism in an (infinity,1)-category|monomorphism]] $U \to j(c)$. \end{proof} \hypertarget{of_coverages}{}\subsubsection*{{Of coverages}}\label{of_coverages} \begin{ulemma} The set of Grothendieck topologies on an $(\infty,1)$-category $C$ is in natural bijection with the set of Grothendieck topologies on its [[homotopy category of an (infinity,1)-category|homotopy category]]. \end{ulemma} This is [[Higher Topos Theory|HTT, remark 6.2.2.3]]. \begin{proof} Because picking full sub-1-categories as well as full sub-$(\infty,1)$-categories amounts to picking sub-sets/sub-classes of the set of equivalence classes of objects. \end{proof} \begin{ucorollary} If the $(\infty,1)$-category $C$ happens to be an ordinary [[category]] (for instance in its incarnation as a [[quasi-category]] it is the [[nerve]] of an ordinary [[category]]), then the structure of an $(\infty,1)$-site on it is the same as the 1-categorical structure of a [[site]] on it. \end{ucorollary} \hypertarget{of_sites}{}\subsubsection*{{Of sites}}\label{of_sites} \begin{uprop} Structures of $(\infty,1)$-sites on an [[(∞,1)-category]] $C$ correspond bijectively to [[topological localization]]s of the [[(∞,1)-category of (∞,1)-presheaves]] to a [[(∞,1)-category of (∞,1)-sheaves]]. See there for more details. \end{uprop} \hypertarget{incarnations_and_models}{}\subsection*{{Incarnations and models}}\label{incarnations_and_models} If [[(∞,1)-categories]] are incarnated as [[simplicially enriched categories]], then an $(\infty,1)$-site appears as an \begin{itemize}% \item [[sSet-site]] \end{itemize} If $(\infty,1)$-categories are [[presentable (∞,1)-category|presented]] by [[model categories]], then the notion of $(\infty,1)$-site appears as that of \begin{itemize}% \item [[model site]]. \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item The \textbf{trivial Grothendieck-topology} on an $(\infty,1)$-category is that where the only covering sieve on each object $c$ is $C_{/c}$ itself. Equivalently, where the only covering monomorphisms $U \to j(c)$ in $PSh(C)$ are the equivalences. The [[(∞,1)-category of (∞,1)-sheaves]] on this site is just the [[(∞,1)-category of (∞,1)-presheaves]] itself. The localization is an equivalence. \item [[étale (∞,1)-site]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[site]] \item [[2-site]], [[(2,1)-site]] \item \textbf{$(\infty,1)$-site} \begin{itemize}% \item [[model site]], [[simplicial site]] \end{itemize} \emph{[[infinity-cohesive site]]} \item [[internal site]] / [[internal (infinity,1)-site]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Section 6.2.2 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} [[!redirects (∞,1)-site]] [[!redirects (infinity,1)-sites]] [[!redirects (∞,1)-sites]] [[!redirects (∞,1)-Grothendieck topology]] [[!redirects (∞,1)-Grothendieck topologies]] \end{document}