\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{(infinity,1)Cat} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{categories_of_categories__contentscategories_of_categories}{}\paragraph*{{[[categories of categories - contents|categories of categories]]}}\label{categories_of_categories__contentscategories_of_categories} [[!include categories of categories - contents]] \textbf{$(\infty,1)Cat$} is the [[(∞,2)-category]] of all small [[(∞,1)-categories]]. Its full [[subcategory]] on [[∞-groupoid]]s is [[∞Grpd]]. \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{the_category}{The $(\infty,2)$-category}\dotfill \pageref*{the_category} \linebreak \noindent\hyperlink{as_an_category}{As an $SSet$-category}\dotfill \pageref*{as_an_category} \linebreak \noindent\hyperlink{as_an_enriched_model_category}{As an enriched model category}\dotfill \pageref*{as_an_enriched_model_category} \linebreak \noindent\hyperlink{the_category_2}{The $(\infty,1)$-category}\dotfill \pageref*{the_category_2} \linebreak \noindent\hyperlink{as_an_category_2}{As an $SSet$-category}\dotfill \pageref*{as_an_category_2} \linebreak \noindent\hyperlink{as_an_enriched_model_category_2}{As an enriched model category}\dotfill \pageref*{as_an_enriched_model_category_2} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{LimitsAndColimits}{Limits and colimits in $(\infty,1)$Cat}\dotfill \pageref*{LimitsAndColimits} \linebreak \noindent\hyperlink{Automorphisms}{Automorphisms}\dotfill \pageref*{Automorphisms} \linebreak \noindent\hyperlink{presentations}{Presentations}\dotfill \pageref*{presentations} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{the_category}{}\subsection*{{The $(\infty,2)$-category}}\label{the_category} \hypertarget{as_an_category}{}\subsubsection*{{As an $SSet$-category}}\label{as_an_category} One incarnation of [[(∞,2)-categories]] is given by [[quasi-category]]-enriched categories (see there for details). As such $(\infty,1)Cat$ is the full [[SSet]]-[[enriched category|enriched]] [[subcategory]] of [[SSet]] on those [[simplicial set]]s that are [[quasi-categories]]. By the fact described at [[(∞,1)-category of (∞,1)-functors]] this is indeed a [[quasi-category]]-enriched category. \hypertarget{as_an_enriched_model_category}{}\subsubsection*{{As an enriched model category}}\label{as_an_enriched_model_category} The [[model category]] presenting this [[(∞,2)-category]] is the Joyal [[model structure for quasi-categories]] $sSet_{Joyal}$. Its full [[sSet]]-[[subcategory]] is the [[quasi-category]] enriched category of quasi-categories from above. \hypertarget{the_category_2}{}\subsection*{{The $(\infty,1)$-category}}\label{the_category_2} Sometimes it is useful to consider inside the full $(\infty,2)$-catgeory of $(\infty,1)$-categories just the maximal $(\infty,1)$-category and discarding all non-invertible [[k-morphism|2-morphisms]]. This is the [[(∞,1)-category of (∞,1)-categories]]. \hypertarget{as_an_category_2}{}\subsubsection*{{As an $SSet$-category}}\label{as_an_category_2} As an [[SSet]]-[[enriched category]] the [[(∞,1)-category of (∞,1)-categories]] is obtained from the quasi-category-enriched version by picking in each [[hom-object]] simplicial set of $(\infty,1)Cat$ the maximal [[Kan complex]]. \hypertarget{as_an_enriched_model_category_2}{}\subsubsection*{{As an enriched model category}}\label{as_an_enriched_model_category_2} One [[model category]] structure presenting this is the [[model structure on marked simplicial over-sets|model structure on marked simplicial sets]]. As a plain [[model category]] this is [[Quillen equivalence|Quillen equivalent]] to $sSet_{Joyal}$, but as an [[enriched model category]] it is $sSet_{Quillen}$ enriched, so that its full [[SSet]]-subcategory on fibrant-cofibrant objects presents the $(\infty,1)$-category of $(\infty,1)$-categories. \hypertarget{properties}{}\subsubsection*{{Properties}}\label{properties} \hypertarget{LimitsAndColimits}{}\paragraph*{{Limits and colimits in $(\infty,1)$Cat}}\label{LimitsAndColimits} [[limit in a quasi-category|Limits and colimits]] over a [[(∞,1)-functor]] with values in $(\infty,1)Cat$ may be reformulation in terms of the [[universal fibration of (infinity,1)-categories]] $Z \to (\infty,1)Cat^{op}$ Then let $X$ be any [[(∞,1)-category]] and \begin{displaymath} F : X \to (\infty,1)Cat \end{displaymath} an [[(∞,1)-functor]]. Recall that the [[Cartesian fibration|coCartesian fibration]] $E_F \to X$ classified by $F$ is the pullback of the [[universal fibration of (∞,1)-categories]] $Z$ along F: \begin{displaymath} \itexarray{ E_F &\to& Z \\ \downarrow && \downarrow \\ X &\stackrel{F}{\to}& (\infty,1)Cat } \end{displaymath} \begin{uprop} Let the assumptions be as above. Then: \begin{itemize}% \item The colimit of $F$ is equivalent to $E_F$: \begin{displaymath} E_F \simeq colim F \end{displaymath} \item The limit of $F$ is equivalent to the [[(infinity,1)-category of cartesian section]] of $E_F \to X$ \begin{displaymath} \Gamma_X(E_F) \simeq lim F \,. \end{displaymath} \end{itemize} \end{uprop} \begin{proof} This is [[Higher Topos Theory|HTT, section 3.3]]. \end{proof} \hypertarget{Automorphisms}{}\paragraph*{{Automorphisms}}\label{Automorphisms} \begin{utheorem} The full subcategory of the [[(∞,1)-category of (∞,1)-categories]] $Func((\infty,1)Cat, (\infty,1)Cat)$ on those [[(∞,1)-functor]]s that are equivalences is equivalent to $\{Id, op\}$: it contains only the identity functor and the one that sends an $(\infty,1)$-category to its [[opposite (infinity,1)-category]]. \end{utheorem} \begin{proof} This is due to \begin{itemize}% \item [[Bertrand Toen]], \emph{Vers une axiomatisation de la th\'e{}orie des cat\'e{}gories sup\'e{}rieures} , K-theory 34 (2005), no. 3, 233-263. \end{itemize} It appears as [[Higher Topos Theory|HTT, theorem 5.2.9.1]] (\href{http://arxiv.org/abs/math.CT/0608040}{arxiv v4+} only) First of all the statement is true for the ordinary category of [[poset]]s. This is \href{http://arxiv.org/PS_cache/math/pdf/0608/0608040v4.pdf#page=311}{prop. 5.2.9.14}. From this the statement is deduced for $(\infty,1)$ -categories by observing that posets are characterized by the fact that two parallel functors into them that are objectwise equivalent are already equivalent, \href{http://arxiv.org/PS_cache/math/pdf/0608/0608040v4.pdf#page=310}{prop. 5.2.9.11}, which means that posets $C$ are characterized by the fact that \begin{displaymath} \pi_0 (\infty,1)Cat(D,C) \to Hom_{Set}( \pi_0 (\infty,1)Cat(*,D) , \pi_0 (\infty,1)Cat(*,C) ) \end{displaymath} is an injection for all $D \in (\infty,1)Cat$. This is preserved under automorphisms of $(\infty,1)Cat$, hence any such automorphism preserves posets, hence restricts to an automorphism of the category of posets, hence must be either the identity or $(-)^{op}$ there, by the above statement for posets. Now finally the main point of the proof is to see that the linear posets $\Delta \subset (\infty,1)Cat$ are [[dense functor|dense]] in $(\infty,1)Cat$, i.e. that the identity transformation of the inclusion functor $\Delta \hookrightarrow (\infty,1)Cat$ exhibits $Id_{(\infty,1)Cat}$ as the left [[Kan extension]] \begin{displaymath} \itexarray{ \Delta &\hookrightarrow& (\infty,1)Cat \\ \downarrow & \nearrow_{Lan = \mathrlap{Id}} \\ (\infty,1)Cat } \,. \end{displaymath} \end{proof} \hypertarget{presentations}{}\subsection*{{Presentations}}\label{presentations} [[!include table - models for (infinity,1)-operads]] \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Pos]] \item [[Set]] \item [[Grpd]], [[∞Grpd]] \item [[Cat]], [[Operad]] \item [[2Cat]] \item \textbf{$(\infty,1)$Cat}, [[(∞,1)Operad]] \item [[(∞,n)Cat]] \item [[(infinity, 1)Prof]] \end{itemize} category: category [[!redirects (∞,1)Cat]] \end{document}