\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{(infinity,n)-category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{introduction}{Introduction}\dotfill \pageref*{introduction} \linebreak \noindent\hyperlink{1CatIntro}{For 1-category theorists}\dotfill \pageref*{1CatIntro} \linebreak \noindent\hyperlink{HomotopyIntro}{For homotopy theorists}\dotfill \pageref*{HomotopyIntro} \linebreak \noindent\hyperlink{Definition}{Definitions}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{AxiomaticCharacterization}{Via generation by strict $n$-categories}\dotfill \pageref*{AxiomaticCharacterization} \linebreak \noindent\hyperlink{strict_categories}{Strict $n$-categories}\dotfill \pageref*{strict_categories} \linebreak \noindent\hyperlink{generation_by_strict_categories}{Generation by strict $n$-categories}\dotfill \pageref*{generation_by_strict_categories} \linebreak \noindent\hyperlink{universal_presentation}{Universal presentation}\dotfill \pageref*{universal_presentation} \linebreak \noindent\hyperlink{PresentationByThetaSpaces}{Presentation by $\Theta_n$-spaces and $n$-fold complete Segal spaces}\dotfill \pageref*{PresentationByThetaSpaces} \linebreak \noindent\hyperlink{ViaEnrichment}{Via $\infty$-enrichment}\dotfill \pageref*{ViaEnrichment} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{presentation_by_segal_categories}{Presentation by Segal $n$-categories}\dotfill \pageref*{presentation_by_segal_categories} \linebreak \noindent\hyperlink{ByEnrichedModelCategories}{Presentation by enriched model categories}\dotfill \pageref*{ByEnrichedModelCategories} \linebreak \noindent\hyperlink{ViaInternalization}{Via $\infty$-internalization}\dotfill \pageref*{ViaInternalization} \linebreak \noindent\hyperlink{general_2}{General}\dotfill \pageref*{general_2} \linebreak \noindent\hyperlink{PresentationByCompleteSegal}{Presentation by $n$-fold complete Segal spaces}\dotfill \pageref*{PresentationByCompleteSegal} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{Generators}{Generators}\dotfill \pageref*{Generators} \linebreak \noindent\hyperlink{truncated_objects}{Truncated objects}\dotfill \pageref*{truncated_objects} \linebreak \noindent\hyperlink{moduli}{Moduli}\dotfill \pageref*{moduli} \linebreak \noindent\hyperlink{WebOfQuillenEquivalences}{Web of Quillen equivalent model category presentations}\dotfill \pageref*{WebOfQuillenEquivalences} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{special_cases}{Special cases}\dotfill \pageref*{special_cases} \linebreak \noindent\hyperlink{specific_examples}{Specific examples}\dotfill \pageref*{specific_examples} \linebreak \noindent\hyperlink{extra_structure_and_properties}{Extra structure and properties}\dotfill \pageref*{extra_structure_and_properties} \linebreak \noindent\hyperlink{monoidal_categories}{$\mathcal{O}$-Monoidal $(\infty,n)$-categories}\dotfill \pageref*{monoidal_categories} \linebreak \noindent\hyperlink{categories_with_all_adjoints}{$(\infty,n)$-Categories with all adjoints}\dotfill \pageref*{categories_with_all_adjoints} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[higher category theory]] an \emph{$(\infty,n)$-category} may be thought of as \begin{itemize}% \item an [[n-category]] up to [[coherence|coherent]] [[homotopy theory|homotopy]]; \item an [[(n,r)-category|(r,n)-category]] for $r = \infty$; \item a [[weak omega-category]] for which all [[k-morphisms]] with $k \gt n$ are [[equivalences]]. \end{itemize} Accordingly, the notion of $(\infty,n)$-categories is a joint generalization of \emph{[[categories]]}, \emph{[[2-categories]]}, \emph{[[3-categories]]}, \emph{[[4-categories]]}, etc. and of \emph{[[∞-groupoids]]} / \emph{[[homotopy types]]} and \emph{[[(∞,1)-categories]]}. From the point of [[homotopy theory]] they are a generalization to \emph{[[directed homotopy theory]]}, from the point of view of [[homotopy type theory]] they are a generalization to \emph{[[directed homotopy type theory]]}. There are two main [[recursion|recursive]] definitions of $(\infty,n)$-categories: \begin{enumerate}% \item by iterated [[enriched (∞,1)-category|(∞,1)-enrichment]] \begin{displaymath} Cat_{(\infty,n)} \simeq (\cdots((Cat_{(\infty,0)} Cat) Cat) \cdots) Cat \end{displaymath} \item by iterated [[category object in an (∞,1)-category|(∞,1)-internalization]] \end{enumerate} \begin{displaymath} Cat_{(\infty,n)} \simeq Cat(\cdots(Cat(Cat_{(\infty,0)}))\cdots) \,. \end{displaymath} There is also a fairly simple axiomatization of the [[(∞,1)-category]] $Cat_{(\infty,n)}$ itself, as something \emph{[[generators and relations|generated]]} by [[strict n-categories]]. Then there is also a plethora of [[model category]] structures that [[presentable (∞,1)-category|present]] the [[(∞,1)-category]] $Cat_{(\infty,n)}$ of all $(\infty,n)$-categories, which means that there are many (and many different) very explicit ways to describe them. A central result of $(\infty,n)$-category theory is the proof of the [[cobordism hypothesis]], which revolves around the \emph{[[(∞,n)-category of cobordisms]]}. This turns out to be the [[free construction|free]] \emph{[[symmetric monoidal (∞,n)-category]]} \emph{[[(∞,n)-category with duals|with duals]]} and provides deep relations between [[algebraic topology]], [[higher algebra]] and [[extended topological quantum field theory]]. Other fundamental examples of $(\infty,n)$-categories, also in this context, are [[(∞,n)-categories of spans]] and of [[(∞,n)-vector spaces]]. While the subject is still young, visible at the horizon is its role in [[higher topos theory]]. Where [[(∞,1)-toposes]] regarded as [[(∞,1)-categories of (∞,1)-sheaves]]/[[∞-stacks]] are by now fairly well understood, it is clear that the [[(∞,2)-categories]] of [[(∞,2)-sheaves]] -- such as the [[codomain fibration]]/[[indexed category|self-indexing]] of an [[(∞,1)-topos]] -- will form an [[(∞,2)-topos]] in generalization of the non-homotopic notion of [[2-topos]]. And so on. \hypertarget{introduction}{}\subsection*{{Introduction}}\label{introduction} Here are some introductory words for readers unfamiliar with the general idea. Other readers should skip \hyperlink{Definition}{ahead}. \begin{itemize}% \item \emph{\hyperlink{1CatIntro}{Introduction for 1-category theorists}} \item \emph{\hyperlink{HomotopyIntro}{Introduction for homotopy theorists}} \end{itemize} \hypertarget{1CatIntro}{}\subsubsection*{{For 1-category theorists}}\label{1CatIntro} This section assumes that the reader is well familiar with [[category theory]] and maybe with [[strict omega-categories]] but in need of some introductory words on $(\infty,n)$-categories. Ordinary [[category theory]] provides various powerful tools for generating higher order structures, among them notably \begin{enumerate}% \item [[enriched category theory|enrichment]] \item [[internalization]]. \end{enumerate} Here we are interested in higher order \emph{[[categories]]}, so we consider [[Cat]] itself as a 1-categorical context for either of these procedures. Since [[Cat]] naturally a [[cartesian monoidal category]] \begin{displaymath} (\mathcal{V}, \otimes) \coloneqq (Cat, \times) \end{displaymath} we may form the [[category of V-enriched categories]] $\mathcal{V}Cat \coloneqq Cat Cat$. A $Cat$-category consists of \begin{itemize}% \item a collection of [[objects]]; \item for each pair of objects $A$, $B$ a \emph{category} of morphisms, hence to be thought of as collection of ordinary morphisms $A \to B$ together with \emph{morphisms between these morphisms}: [[2-morphisms]]; \item such that composition is a \emph{functor} on these hom-categories. \end{itemize} This is the structure of a \emph{[[strict 2-category]]}. We have that \begin{displaymath} Cat Cat \simeq Str 2 Cat \,. \end{displaymath} is the category of strict 2-categories. By general results of [[enriched category theory]] (or by immediate inspection), this is still a [[cartesian monoidal category]] and so we may iterate this and consider now the enriching category \begin{displaymath} (\mathcal{V}, \otimes) \coloneqq (Cat Cat, \times) \end{displaymath} and construct again $\mathcal{V}Cat$, which now is \begin{displaymath} (Cat Cat) Cat \simeq Str 3 Cat \end{displaymath} the category of strict \emph{[[3-categories]]}. It continues this way, and so for every $n \in \mathbb{N}$ the $n$-fold iterated enrichment of $Cat$ is the category \begin{displaymath} Str n Cat \simeq (\cdots ((Cat Cat)Cat) \cdots) Cat \end{displaymath} of \emph{[[strict n-categories]]}. The [[inductive limit]] of this construction finally is the category of [[strict omega-categories]]. While this easily generates [[higher category theory|higher categorical structures]], it does so, as the terminology indicates, only in a very restrictive way: while every [[2-category]] still happens to be [[equivalence of 2-categories|equivalent]] to a [[strict 2-category]], already the general [[3-category]] is no longer equivalent to a strict 3-category, and the discrepancy only increases with $n$. But inspection in the case of [[2-categories]] already shows what the problem is: in a [[bicategory|weak 2-category]] structural relations such as [[associativity]] and [[unitality]] no longer hold as equations but only \emph{up to} an \emph{invertible} [[2-morphism]], whereas objects in $Str 2 Cat \simeq Cat Cat$, by definition of [[enriched category]], satisfy these relations \emph{strictly} -- therefore the name. But this problem directly corresponds to an evident shortcoming of the very starting point of the above recursive construction: that construction regarded [[Cat]] as a 1-category in order to fit it into the standard formulation of [[enriched category theory]]; however [[Cat]] is naturally rather a [[2-category]] itself. The enrichment procedure should be allowed to make use of this extra structure. On the other hand, as we have just seen, the failure of $Cat Cat$ to model all of [[2Cat]] is only in the lack of \emph{invertible} 2-morphisms. Therefore what should really matter for the improved enrichment is just the [[(2,1)-category]] underlying [[Cat]], which is the 2-category consisting of all [[categories]], all [[functors]] between them, but only \emph{[[natural isomorphism]]} instead of all [[natural transformations]] between those. This way one does arrive at a suitable refined notion of enrichment over the [[(2,1)-category]] $Cat$, and interpreted this way one does finds that $Cat Cat$ then indeed produces all of [[2Cat]]. However, this only fixed the first step of the above recursive definition. In the next step we want $(2 Cat)Cat$ to produce all [[3-categories]], but their associativity and unitalness now involves invertible [[coherence]] \emph{[[3-morphisms]]} which do not appear in enriched $(2,1)$-category theory. And so on, as the recursion proceeds. This shows that the natural starting point for a construction of [[n-categories]] by recursive enrichment must be a conception of 1-[[category theory]] which knows already about \emph{invertible} [[k-morphisms]] for all $k$. The notion of category where all 1-categorical operations are relaxed up to \emph{invertible} higher morphisms is that of \emph{[[(∞,1)-category]]}. And this now turns out to be a good starting point for producing $n$-categories by recursive enrichment. If we then just replace in the above the naive [[Cat]] with [[(∞,1)Cat]], then the simple formula \begin{displaymath} Cat_{(\infty,n)} \coloneq (\cdots ((Cat_{(\infty,1)} Cat_{(\infty,1)})Cat_{(\infty,1)}) \cdots) Cat_{(\infty,1)} \end{displaymath} does produce a good general notion of $n$-categories, these are the \emph{$(\infty,n)$-categories} discussed here. There is also an alternative road to the same conclusion: another standard procedure for producing higher order structures from the 1-category [[Cat]] is to consider [[internal categories]] in $Cat$. For $E$ a category with [[finite limits]], write $Cat(E)$ for the category of $E$-[[internal categories]], and hence $Cat(Cat)$ for the category of $Cat$-internal categories. This gives \emph{[[double categories]]} \begin{displaymath} DoubleCat \simeq Cat(Cat) \end{displaymath} and hence again not quite the [[2-categories]] that we are after. But it is of interest to note that now there are \emph{two} problems, not just the one above: while a $Cat$-internal category again has strict [[associativity]] and [[unitality]], instead of the desired version up to an invertible 2-morphism, in another direction it is more general than a [[strict 2-category]]: the latter only corresponds to those special double categories for which the ``vertical'' and the ``horizontal'' 1-morphisms come from the same 1-category and have sufficiently many degenerate 2-morphisms between them. The first problem turns out to be solved as before: instead of working with the 1-category [[Cat]] we should already regard that as a [[(2,1)-category]] and then formulate \emph{internal (2,1)-categories} in straightforward generalization of the ordinary notion. For the second problem it turns out that one needs to slightly enhance that straightforward generalization and add a condition known (somewhat undescriptively) as \emph{[[complete Segal space|completeness]]}. But if this is understood then (as discussed in detail at [[internal category in an (∞,1)-category]]) the simple idea of iterated internalization does work out and we obtain $(\infty,n)$-categories by \begin{displaymath} Cat_{(\infty,n)} \simeq Cat(\cdots(Cat(Cat_{(\infty,0)}))\cdots) \,. \end{displaymath} \hypertarget{HomotopyIntro}{}\subsubsection*{{For homotopy theorists}}\label{HomotopyIntro} This section assumes that the reader is well familiar with [[homotopy theory]] and maybe with [[(∞,1)-category theory]] but in need of some introductory words on $(\infty,n)$-categories. A fundamental insight of [[homotopy theory]] is, of course, that the [[geometric shapes for higher structures|cellular shape]] of [[simplices]] naturally serves to model paths and higher [[homotopies]] in ``spaces'', which here really means: in [[homotopy types]]/[[∞-groupoids]]. In fact, the simplices see a bit more: since $\Delta[n]$ is naturally identified with the [[total order|linear category]] $\{0 \to 1 \to 2 \to \cdots \to n\}$ on $(n+1)$-objects, there is a \emph{direction} on the paths which form the [[simplicial skeleton|1-skeleton]] of a map $\Delta^n \to X$. If $X$ is a [[topological space]]/[[simplicial set]]/[[homotopy type]], then this directedness in a way ``disappears up to equivalence'', in that for every such directed path there is also the reverse path, which is an inverse up to equivalence. But it is straightforward to consider a slight generalization of this situation where we take $X$ to be such that \emph{not} all paths in it have inverses. Still thinking of $X$ as a homotopy type this may be thought of as modelling a \emph{[[directed homotopy theory|directed homotopy type]]}. For $X$ instead modeled as a simplicial set, this has been formalized by the concept of a \emph{[[quasi-category]]} or \emph{[[(∞,1)-category]]}. These are combinatorial models for \emph{[[directed homotopy theory|directed homotopy types]]} in direct generalization of how [[Kan complexes]] are combinatorial models for ordinary [[homotopy types]]. As the notation already suggests, the idea of $(\infty,n)$-category theory is that this generalization from [[∞-groupoids]] (``($\infty,0$)-categories'') to [[(∞,1)-categories]] is but the first step in a tower of higher generalizations, where in step $n$ one considers ``directed homotopy'' up to and including dimension $n$. It is natural that such \emph{$(\infty,n)$-categories} should be probed by corresponding higher dimensional analogs of the objects in the [[simplex category]], the linear categories $\Delta[n] = \{0 \to 1 \to 2 \to \cdots \to n\}$ that support traditional homotopy theory. There are many such generalizations which one could consider. One which has proven to be useful are the objects in the $n$th [[Theta-category]] $\Theta_n$. Where the linear categories as above arise from gluing -- [[pasting]] -- of cellular intervals, the objects of $\Theta_n$ arise from [[pasting]] of $n$-dimensional cellular \emph{[[globes]]} (an interval being a 1-dimensional globe). Accordingly, just as an [[∞-groupoid]]/[[homotopy type]] may be presented by a [[simplicial set]], hence a [[presheaf]] on the [[simplex category]] -- or more generally by a [[bisimplicial set|simplicial space]]-- satisfying some ([[Kan complex|Kan filler]]-)condition that encodes the existence of composites and inverses, so an [[(∞,n)-category]] may be presented by a presheaf of spaces on the $n$th [[Theta-category]], similarly subject to some conditions that ensure the existence of composites and inverses -- but only of inverses above dimension $n$. \hypertarget{Definition}{}\subsection*{{Definitions}}\label{Definition} There are various different ways of defining $(\infty,n)$-categories, which are all natural in their own right, and all equivalent to each other. There is an axiomatic characterization of the [[(∞,1)-category]] of $(\infty,n)$-categories by [[generators and relations|generation]] from [[strict n-categories]]: \begin{itemize}% \item \hyperlink{AxiomaticCharacterization}{Definition via generation from strict n-categories} \end{itemize} Among the more direct definitions of $(\infty,n)$-categories one can roughly distinguish two flavors, those that build $(\infty,n)$-categories by \emph{[[enriched category|enrichment]]} over $(\infty,n-1)$-categories \begin{itemize}% \item \hyperlink{ViaEnrichment}{Definitions via enrichment} \end{itemize} and those that build them by [[internalization]] in the collection of $(\infty,n-1)$-categories \begin{itemize}% \item \hyperlink{ViaInternalization}{Definitions via internalization}. \end{itemize} \hypertarget{AxiomaticCharacterization}{}\subsubsection*{{Via generation by strict $n$-categories}}\label{AxiomaticCharacterization} We discuss a characterization of the [[(∞,1)-category]] of $(\infty,n)$-categories as an $(\infty,1)$-category [[generators and relations|generated]] by [[strict n-categories]], due to (\hyperlink{BarwickSchommerPries}{Barwick, Schommer-Pries}). The blueprint for the following construction is the traditional fact that a [[category]] is characterized by the fact that its [[nerve]] is a [[simplicial set]] which satisfies the [[Segal conditions]], which reflect the existence of composition in a category. Since the simplicial nerve is induced from the [[total order|linear categories]] $\Delta[n] = \{0 \to 1 \to 2 \to \cdots \to n\}$ this can be taken as saying that these linear categories \emph{generate} [[Cat]], subject to the condition that there exists composites. The following discussion takes this point of view and generalizes it to a similar presentation of $(\infty,n)$-categories by very simple [[strict n-categories]]. \hypertarget{strict_categories}{}\paragraph*{{Strict $n$-categories}}\label{strict_categories} The main definition is def. \ref{AxiomaticDefinition} below, which roughly says that the collection of $(\infty,n)$-categories is \emph{generated} from [[strict n-categories]] in a certain sense. Therefore we first need to fix some terminology and notions about strict $n$-categories and about the relevant notion of generation. \begin{defn} \label{GauntStrictNCategories}\hypertarget{GauntStrictNCategories}{} Write $Str n Cat$ for the 1-[[category]] of [[strict n-categories]]. Write \begin{displaymath} Str n Cat_{gaunt} \hookrightarrow Str n Cat \end{displaymath} for the [[full subcategory]] on the \emph{[[gaunt category|gaunt]] $n$-categories}, those $n$-categories whose only invertible [[k-morphisms]] are the identities. \end{defn} This subcategory was considered in (\hyperlink{Rezk}{Rezk}). The term ``gaunt'' is due to (\hyperlink{BarwickSchommerPries}{Barwick, Schommer-Pries}). See prop. \ref{GauntIs0Truncated} below for a characterization intrinsic to $(\infty,n)$-categories. \begin{example} \label{Globes}\hypertarget{Globes}{} For $k \leq n$ the $k$-[[globe]] is gaunt, $G_k \in Str n Cat_{gaunt} \hookrightarrow \in Str n Cat$. Write \begin{displaymath} \mathbb{G}_{\leq n} \hookrightarrow Str n Cat_{gaunt} \end{displaymath} for the [[full subcategory]] of the [[globe category]] on the $k$-globes for $k \leq n$. Being a [[subobject]] of a gaunt $n$-category, also the [[boundary]] of a globe $\partial G_k \hookrightarrow G_k$ is gaunt, i.e. the $(k-1)$-[[skeleton]] of $G_k$. \end{example} \begin{defn} \label{Suspension}\hypertarget{Suspension}{} Write \begin{displaymath} \sigma_k : Str (k) Cat \to Str (k+1) Cat \end{displaymath} for the ``categorical suspension'' functor which sends a strict $k$-category to the object $\sigma(X) \in Str (k+1) Cat \simeq (Str k Cat)Cat$ which has precisely two objects $a$ and $b$, has $\sigma(C)(a,a) = \{id_a\}$, $\sigma(C)(b,b) = \{id_b\}$, $\sigma(C)(b,a) = \emptyset$ and \begin{displaymath} \sigma(C)(a,b) = C \,. \end{displaymath} \end{defn} We usually suppress the subscript $k$ and write $\sigma^i = \sigma_{k+i} \circ \cdots \circ \sigma_{k+1} \circ \sigma_k$, etc. \begin{example} \label{}\hypertarget{}{} The $k$-[[globe]] $G_k$ is the $k$-fold suspension of the 0-globe (the point) \begin{displaymath} G_k = \sigma^k(G_0) \,. \end{displaymath} The [[boundary]] $\partial G_k$ of the $k$-globe is the $k$-fold suspension of the empty category \begin{displaymath} \partial G_k = \sigma^k(\emptyset) \,. \end{displaymath} Accordingly, the boundary inclusion $\partial G_k \hookrightarrow G_k$ is the $k$-fold suspension of the initial morphism $\emptyset \to G_0$ \begin{displaymath} (\partial G_k \hookrightarrow G_k) = \sigma^k(\emptyset \to G_0) \,. \end{displaymath} \end{example} \begin{prop} \label{}\hypertarget{}{} The category $Str n Cat_{gaunt}$ is a [[locally presentable category]] and in fact a [[locally finitely presentable category]]. \end{prop} (\hyperlink{BarwickSchommerPries}{B-PS, lemma 3.5}) We are going to be interested in a full [[subcategory]] $Str n Cat_{gen} \hookrightarrow Str n Cat_{gaunt}$, given below in def. \ref{nCatGen}, which knows about the higher [[profunctors]]/[[correspondence|correspondences]] between $n$-categories. \begin{remark} \label{}\hypertarget{}{} For $A,B$ two categories, a [[profunctor]] $A^{op} \times B \to Set$ is equivalently a category [[slice category|over]] the 1-globe functor, hence a functor \begin{displaymath} \itexarray{ K \\ \downarrow \\ G_1 & = \Delta[1] } \end{displaymath} equipped with an identification $A \simeq K_0$ and $B \simeq K_1$. \end{remark} This motivates the following definition. \begin{defn} \label{}\hypertarget{}{} A \emph{$k$-profunctor} / $k$-correspondence of strict $n$-categories is a morphism $K \to G_k$ in $Str n Cat$. The category of $k$-correspondences is the [[slice category]] $Str n Cat/ G_k$. \end{defn} \begin{defn} \label{}\hypertarget{}{} The categories $Str n Cat_{gaunt}/G_k$ of $k$-correspondences between gaunt $n$-categories are [[cartesian closed category]]. \end{defn} (\hyperlink{BarwickSchommerPries}{B-SP, cor. 5.4}) \begin{remark} \label{}\hypertarget{}{} By standard facts, in a [[locally presentable category]] $\mathcal{C}$ with [[finite limits]], a [[slice category|slice]] $\mathcal{C}/X$ is cartesian closed precisely if [[pullback]] along all morphisms $f : Y \to X$ with codomain $X$ preserves [[colimits]] (see at \emph{[[locally cartesian closed category]]} the section \emph{\href{locally%20cartesian%20closed%20category#EquivalentCharacterizations}{Cartesian closure in terms of base change and dependent product}}). \end{remark} \begin{example} \label{}\hypertarget{}{} Without the restriction that the codomain of $f$ in the above is a [[globe]], the pullback $f^*$ in $Str n Cat$ will in general fail to preserves colimits. For a simple example of this, consider the [[pushout]] diagram in [[Cat]] $\hookrightarrow Cat_{(\infty,1)}$ given by \begin{displaymath} \itexarray{ \Delta[0] &\stackrel{\delta_1}{\to}& \Delta[1] \\ {}^{\mathllap{\delta_0}}\downarrow && \downarrow^{\mathrlap{\delta_0}} \\ \Delta[1] &\stackrel{\delta_2}{\to}& \Delta[2] } \,. \end{displaymath} Notice that this is indeed also a [[homotopy pushout]]/[[(∞,1)-pushout]] since, by remark \ref{GauntIs0Truncted}, all objects involved are 0-truncated. Regard this canonically as a pushout diagram in the [[slice category]] $Cat_{/\Delta[2]}$ and consider then the pullback $\delta_1^* : Cat_{/\Delta[1]} \to Cat_{/\Delta[1]}$ along the remaining face $\delta_1 : \Delta[1] \to \Delta[2]$. This yields the diagram \begin{displaymath} \itexarray{ \emptyset &\stackrel{}{\to}& \emptyset \\ {}^{}\downarrow && \downarrow^{} \\ \emptyset &\stackrel{}{\to}& \Delta[1] } \,, \end{displaymath} which evidently no longer is a pushout. \end{example} (See also the discussion \href{http://golem.ph.utexas.edu/category/2011/11/the_1category_of_ncategories.html#c040335}{here}). The definition of $Cat_{(\infty,n)}$ below, def. \ref{AxiomaticDefinition}, will take this property to be one of the characteristic properties. Therefore consider \begin{defn} \label{nCatGen}\hypertarget{nCatGen}{} Write \begin{displaymath} Str n Cat_{gen} \hookrightarrow Str n Cat_{gaunt} \end{displaymath} for the smallest [[full subcategory]] that \begin{enumerate}% \item contains the [[globe category]] $\mathbb{G}_{\leq n}$, example \ref{Globes}; \item is closed under [[retracts]] in $Str n Cat_{gaunt}$; \item has all [[fiber products]] over [[globes]] (equivalently: such that all [[slice categories]] over globes have [[products]]). \end{enumerate} \end{defn} (\hyperlink{BarwickSchommerPries}{B-SP, def. 5.6}) \begin{example} \label{}\hypertarget{}{} The following categories are naturally [[full subcategories]] of $Str n Cat_{gen}$ \begin{itemize}% \item the $n$-fold [[simplex category]] $\Delta^{\times n}$; \item the $n$th [[Theta-category]]. \end{itemize} \end{example} This is discussed in more detail below in \emph{\hyperlink{PresentationByThetaSpaces}{Presentation by Theta-spaces and by n-fold Segal spaces}}. \begin{defn} \label{FundamentalPushouts}\hypertarget{FundamentalPushouts}{} The following [[pushouts]] in $Str n Cat$ we call the \textbf{fundamental pushouts} \begin{enumerate}% \item Gluing two $k$-[[globes]] along their [[boundary]] gives the boundary of the $(k+1)$-globle \begin{displaymath} G_k \coprod_{\partial C_{k-1}} G_k \simeq \partial G_{k+1} \end{displaymath} \item Gluing two $k$-globes along an $i$-face gives a [[pasting]] composition of the two globles \begin{displaymath} G_k \coprod_{G_i} G_k \end{displaymath} \item The [[fiber product]] of globes along non-degenerate morphisms $G_{i+j} \to G_i$ and $G_{i+k} \to G_i$ is built from gluing of globes by \begin{displaymath} G_{i+j} \times_{G_i} G_{i+k} \simeq (G_{i+j} \coprod_{G_i} G_{i+k}) \coprod_{\sigma^{i+1}(G_{j-1} \times G_{k-1})} (G_{i+k} \coprod_{G_i} G_{i+j}) \end{displaymath} \item The [[interval groupoid]] $(a \stackrel{\simeq}{\to} b)$ is obtained by forcing in $\Delta[3]$ the morphisms $(0\to 2)$ and $(1 \to 3)$ to be identities and it is equivalent, as an $n$-category, to the 0-globe $\Delta[3] \coprod_{\{0,2\} \coprod \{1,3\}} (\Delta[0] \coprod \Delta[0]) \stackrel{\sim}{\to} G_0$ and the analog is true for all suspensions of this relation \begin{displaymath} \sigma^k(\Delta[3]) \coprod_{\sigma^k\{0,2\} \coprod \sigma^k\{1,3\}} (G_k\coprod G_k) \stackrel{\sim}{\to} G_k \,. \end{displaymath} \end{enumerate} We say a functor $i$ on $Str n Cat$ \emph{preserves} the fundamental pushouts if it preserves the first three classes of pushouts, and if for the last one the morphism $i(\sigma^k(\Delta[3])) \coprod_{i(\sigma^k\{0,2\}) \coprod i(\sigma^k\{1,3\})} (i(G_k \coprod G_k)) \to i(G_k)$ is an equivalence. \end{defn} \hypertarget{generation_by_strict_categories}{}\paragraph*{{Generation by strict $n$-categories}}\label{generation_by_strict_categories} Def. \ref{AxiomaticDefinition} considers an $(\infty,1)$-category \emph{generated} from $Str n Cat_{gen}$ in the following sense \begin{defn} \label{StrongGeneration}\hypertarget{StrongGeneration}{} For $\mathcal{D}$ an [[(∞,1)-category]] with all small [[(∞,1)-colimits]], say that an [[(∞,1)-functor]] \begin{displaymath} f : \mathcal{C} \to \mathcal{D} \end{displaymath} \emph{strongly generates} $\mathcal{D}$ if its $(\infty,1)$-[[Yoneda extension]] on the [[(∞,1)-category of (∞,1)-presheaves]] \begin{displaymath} f : \mathcal{C} \stackrel{y}{\hookrightarrow} PSh_\infty(\mathcal{C}) \stackrel{Lan_y}{\to} \mathcal{D} \end{displaymath} is the reflector of a [[reflective sub-(∞,1)-category]] \begin{displaymath} \mathcal{D} \stackrel{\overset{Lan_y}{\leftarrow}}{\hookrightarrow} PSh_\infty(\mathcal{C}) \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} By definition, a strongly generated $(\infty,1)$-category is in particular a [[presentable (∞,1)-category]]. \end{remark} \begin{defn} \label{AxiomaticDefinition}\hypertarget{AxiomaticDefinition}{} An \textbf{$(\infty,1)$-category of $(\infty,n)$-categories} $Cat_{(\infty,n)}$ is an [[(∞,1)-category]] equipped with a [[full and faithful functor]] \begin{displaymath} i : Str n Cat_{gen} \hookrightarrow \tau_{\leq 0}Cat_{(\infty,n)} \end{displaymath} from the generating strict $n$-categories, def. \ref{nCatGen} into its category of [[n-truncated object in an (infinity,1)-category|0-truncated]] objects, such that \begin{enumerate}% \item $Str n Cat_{gen} \to \tau_{\leq 0} Cat_{(\infty,n)} \hookrightarrow Cat_{(\infty,n)}$ \hyperlink{StrongGeneration}{strongly generates} $\mathcal{C}$; \item $i$ preserves the \hyperlink{FundamentalPushouts}{fundamental pushout} relations; \item the [[base change]] [[adjoint triple]] in $Cat_{(\infty,n)}$ exists along morphisms with codomain a [[globe]]; \end{enumerate} and such that $\mathcal{C}$ is [[universal property|universal]] with respect to these properties in that for any other $j : Str n Cat_{gen} \hookrightarrow \mathcal{C}$ satisfying these three conditions it factors through $i$ \begin{displaymath} j : Str n Cat \stackrel{i}{\to} Cat_{(\infty,n)} \stackrel{L}{\to} \mathcal{C} \end{displaymath} by an [[(∞,1)-functor]] $L$ which is the reflector of a [[reflective sub-(∞,1)-category|reflective inclusion]] $\mathcal{C} \hookrightarrow Cat_{(\infty,n)}$. \end{defn} (\hyperlink{BarwickSchommerPries}{B-SP, def. 6.8}) \begin{remark} \label{}\hypertarget{}{} By the first axiom, the localization demanded in the universal property is essentially unique. In particular, therefore, $Cat_{(\infty,n)}$ is defined uniquely, up to [[equivalence of (∞,1)-categories]]. For more on this see prop. \ref{AutomorphismInfinityGroup} below. \end{remark} \begin{remark} \label{GauntIs0Truncted}\hypertarget{GauntIs0Truncted}{} The gaunt $n$-categories, def. \ref{GauntStrictNCategories} are indeed among the [[n-truncated object in an (∞,1)-category|0-truncated]] objects: since we are looking at just the [[(∞,1)-category]] of $(\infty,n)$-categories, instead of more generally the $(\infty,n+1)$-category the non-invertible [[transfors]] between $n$-categories are disregarded and so if an object $X \in Cat_{(\infty,n)}$ has no non-trivial invertible cells, then for every other objeyt $Y$, the hom-$\infty$-groupoid $Cat_{(\infty,n)}(Y,X)$ is 0-truncated, hence is a set. \end{remark} \begin{remark} \label{}\hypertarget{}{} The first axiom in particular says that $Cat_{(\infty,n)}$ is a [[presentable (∞,1)-category]], and hence so are all its [[over-(∞,1)-category|slices]]. In view of this the [[adjoint (∞,1)-functor theorem]] says that the third condition is equivalent to [[(∞,1)-pullbacks]] \begin{displaymath} f^* : Cat_{(\infty,n)}/_{i(G_k)} \to Cat_{(\infty,n)}/X \end{displaymath} along morphisms of the form $X \to i(G_k)$ preserving [[(∞,1)-colimits]]. \end{remark} \hypertarget{universal_presentation}{}\paragraph*{{Universal presentation}}\label{universal_presentation} By def. \ref{AxiomaticDefinition} $Cat_{(\infty,n)}$ is [[equivalence of (∞,1)-categories|equivalent]] to a [[localization of an (∞,1)-category|localization]] of the [[(∞,1)-category of (∞,1)-presheaves]] on $Str n Cat_{gen}$. In fact, various subcategories of $Str n Cat_{gen}$ are already sufficient, notable the [[Theta-category]] $\Theta_n \hookrightarrow Str n Cat$ (discussed below in \ref{PresentationByThetaSpaces}). Here we discuss these [[presentable (∞,1)-category|presentations]]. \begin{defn} \label{UniversalLocalizingClass}\hypertarget{UniversalLocalizingClass}{} Let $S_{0} \subset Mor(PSh_\infty(Str n Cat_{gen}))$ be the class of morphism generated under fiber product $X \times_{G_k} (-)$ with objects $X \in Str n Cat_{gen}$ over globes by \begin{enumerate}% \item the morphisms that witness the \hyperlink{FundamentalPushouts}{fundamental pushout relations} \item the initial morphism $\emptyset \to i(\emptyset)$ into presheaf represented by the empty category (which coincides with the initial presheaf on all objects except on the empty category, where it is the singleton). \end{enumerate} Write $S$ for the strongly saturated class of morphisms (see [[reflective sub-(∞,1)-category]]) generated by $S_0$. \end{defn} \begin{prop} \label{}\hypertarget{}{} The [[localization of an (∞,1)-category|localization]] of the [[(∞,1)-category of (∞,1)-presheaves]] over $Str n Cat_{gen}$, def. \ref{nCatGen} at the class of morphism $S$ from def. \ref{UniversalLocalizingClass} is a [[presentable (∞,1)-category|presentation]] of $Cat_{(\infty,n)}$, def. \ref{AxiomaticDefinition}: \begin{displaymath} Cat_{(\infty,n)} \simeq PSh_\infty(Str n Cat_{gen})[S^{-1}] \,. \end{displaymath} \end{prop} (\hyperlink{BarwickSchommerPries}{B-SP, theorem 7.6}). \begin{proof} The three axioms of def. \ref{AxiomaticDefinition} are satisfied effectively by construction of $S$ (\ldots{}). Conversely, every localization satisfying the second and third axiom must invert the morphisms in $S$, hence must be a sub-localization. \end{proof} \begin{remark} \label{}\hypertarget{}{} This construction shows that the \hyperlink{FundamentalPushouts}{fundamental pushout relations} encode the \emph{composition} of [[k-morphisms]] in an $(\infty,n)$-category. Let $X \in PSh_\infty(Str n Cat)$ be some object. Firts, by the [[(∞,1)-Yoneda lemma]] the value of this [[(∞,1)-presheaf]] on a strict $n$-category $C$ is the $\infty$-groupoid of $(\infty,n)$-functors $C \to X$, [[natural equivalences]] between them, and so on. And if $X$ is an $S$-[[local object]] then it has in particular the property that all the morphisms \begin{displaymath} Cat_{(\infty,n)}( i(G_k) \coprod_{i(G_j)} i(G_k) \to i(G_jk \coprod_{ G_j } G_k) , X ) \end{displaymath} are equivalences of $\infty$-groupoids. So by the [[(∞,1)-Yoneda lemma]] this is equivalent to \begin{displaymath} X(G_k) \times_{X(G_i)} X(G_k) \to Cat_{(\infty,n)}(i(G_jk \coprod_{ G_j } G_k), X) \end{displaymath} being an equivalence. On the left this is the collection of all those pairs of $k$-globes in $X$ that touch at an $i$-boundary. On the right this is the collection of all [[k-morphisms]] in $X$ equipped with a choice of decomposing them into two $k$-morphisms touching at an $i$-boundary. So the statement that this morphism is an equivalence says that \emph{composition} of $k$-morphisms along $i$-boundaries exists in $X$. \end{remark} Various other presentations of $Cat_{(\infty,n)}$ are obtained by localizations over subcategories of\newline $i : Str n Cat_{restr} \hookrightarrow Str n Cat_{gen}$ at a set of morphisms $T \subset Mor(PSh_\infty(R))$. Write \begin{displaymath} PSh_\infty(Str n Cat_{restr}) \stackrel{\overset{i_!}{\to}}{\stackrel{\overset{i^*}{\leftarrow}}{\underset{i_*}{\to}}} PSh_\infty(Str n Cat_{gen}) \end{displaymath} for the induced [[essential geometric morphism]]. \begin{prop} \label{SufficientConditionsForPresentation}\hypertarget{SufficientConditionsForPresentation}{} The following conditions are sufficient in order that \begin{displaymath} Cat_{(\infty,n)} \simeq PSh_\infty(Str n Cat_{gen})[S^{-1}] \stackrel{i^*}{\to} PSh_\infty(Str n Cat_{restr})[T^{-1}] \end{displaymath} is an [[equivalence of (∞,1)-categories]]: \begin{enumerate}% \item $i^*(S_0) \subset T$ \item $i_!(T_0) \subset S$ \item [[generalized the|the]] [[unit of an adjunction|counit]] $id \to i^* i_!$ has components in $T$; \item the $k$-[[globe]] $G_k$ is in the essential image of $i$, for each $0 \leq k \leq n$. \end{enumerate} \end{prop} (\hyperlink{BarwickSchommerPries}{B-SP, theorem 9.2}) \hypertarget{PresentationByThetaSpaces}{}\paragraph*{{Presentation by $\Theta_n$-spaces and $n$-fold complete Segal spaces}}\label{PresentationByThetaSpaces} We discuss now presentations of $Cat_{(\infty,n)}$ over subcategories of $Str n Cat_{gen}$, according to prop. \ref{SufficientConditionsForPresentation}. \begin{prop} \label{}\hypertarget{}{} The $n$th [[Theta category]] is a [[full subcategory]] \begin{displaymath} \Theta_n \hookrightarrow Str n Cat_{gen} \end{displaymath} and the localization of $PSh_\infty(\Theta_n)$ that defines the $(\infty,1)$-category $\Theta_n Space$ of $(\infty,n)$-[[Theta-spaces]] satisfies the conditions of prop. \ref{SufficientConditionsForPresentation}. Hence $(\infty,n)$-[[Theta-spaces]] are a model for $(\infty,n)$-categories, in the sense of def. \ref{AxiomaticDefinition}: \begin{displaymath} \Theta_n Space \simeq Cat_{(\infty,n)} \,. \end{displaymath} \end{prop} (\hyperlink{BarwickSchommerPries}{B-SP, theorem 11.15}) There is a further restriction from the objects of $\Theta_n$ to \emph{$n$-fold simplices} regarded as \emph{\href{Theta+category#EmbeddingOfGrids}{grid object}}, under the canonical embedding \begin{displaymath} \delta_n : \Delta^{\times n} \to \Delta^{\wr n} \simeq \Theta_n \end{displaymath} induced by the identification of the $n$th[[Theta-category]] (see there) with the $n$-fold [[categorical wreath product]] of the [[simplex category]] with itself. \begin{prop} \label{CompleteSegalOvernFoldSimplicialSetsIsPresentation}\hypertarget{CompleteSegalOvernFoldSimplicialSetsIsPresentation}{} The inclusion \begin{displaymath} \Delta^{\times n} \stackrel{\delta_n}{\to} \Theta_n \hookrightarrow Str n Cat_{gen} \end{displaymath} and the localization of $PSh_\infty(\Delta^{\times n})$ that defines the $(\infty,1)$-category $CSS(\Delta^{\times n})$ of \emph{[[n-fold complete Segal spaces]]} satisfies the conditions of prop. \ref{SufficientConditionsForPresentation}. Hence [[n-fold complete Segal spaces]] are a model for $(\infty,n)$-categories, in the sense of def. \ref{AxiomaticDefinition}: \begin{displaymath} CSS(\Delta^{\times n}) \simeq Cat_{(\infty,n)} \,. \end{displaymath} \end{prop} (\hyperlink{BarwickSchommerPries}{B-SP, theorem 12.6}) \begin{remark} \label{}\hypertarget{}{} Below in \hyperlink{PresentationByCompleteSegal}{Via ∞-Internalization -- Presentation by complete Segal spaces} is discussed that $n$-fold complete Segal spaces also naturally model an alternative definition of $(\infty,n)$-categories by \hyperlink{ViaInternalization}{iterated ∞-internalization}. Then prop. \ref{CompleteSegalOvernFoldSimplicialSetsIsPresentation} serves to show that this is equivalent to def. \ref{AxiomaticDefinition} above. \end{remark} \hypertarget{ViaEnrichment}{}\subsubsection*{{Via $\infty$-enrichment}}\label{ViaEnrichment} \hypertarget{general}{}\paragraph*{{General}}\label{general} There should be a general notion of \emph{[[enriched (∞,1)-category]]} (see there) over a [[monoidal (∞,1)-category]] $\mathcal{V}$. Write $\mathcal{V}Cat$ for the [[(∞,1)-category]] of $\mathcal{V}$-enriched $(\infty,1)$-categories. \begin{defn} \label{EnrichementDefinition}\hypertarget{EnrichementDefinition}{} For $n \in \mathbb{N}$ write \begin{displaymath} Cat_{(\infty,n)} \coloneqq (((\infty Grpd Cat) Cat) \cdots) Cat \,. \end{displaymath} \end{defn} \hypertarget{presentation_by_segal_categories}{}\paragraph*{{Presentation by Segal $n$-categories}}\label{presentation_by_segal_categories} The notion of \emph{[[Segal n-categories]]} is a realization of the idea of \emph{weak enrichment} in a suitable [[model category]]. For nice enough model categories this can be further strictfied to just the notion of [[enriched model category]], discussed \emph{\hyperlink{ByEnrichedModelCategories}{below}} (\ldots{}) \hypertarget{ByEnrichedModelCategories}{}\paragraph*{{Presentation by enriched model categories}}\label{ByEnrichedModelCategories} (\ldots{}) \hypertarget{ViaInternalization}{}\subsubsection*{{Via $\infty$-internalization}}\label{ViaInternalization} \hypertarget{general_2}{}\paragraph*{{General}}\label{general_2} There is a general notion of \emph{[[internal category in an (∞,1)-category]]} $\mathcal{C}$ provided that \begin{enumerate}% \item $\mathcal{C}$ has [[finite limit|finite]] [[(∞,1)-limits]] -- in order to formulate the [[Segal condition]]; \item $\mathcal{C}$ is equipped with a ``choice of internal [[∞-groupoids]]'' -- in order to formulate the \href{complete%20Segal%20space#CompleteSegalSpaces}{completeness condition}. \end{enumerate} We can use this to define $Cat_{(\infty,n)}$ by iterative internalization. \begin{defn} \label{}\hypertarget{}{} Write $Grpd(Cat_{(\infty,0)})$ for the catgeory of [[groupoid objects in an (∞,1)-category]] in $Cat_{(\infty,0)} \simeq$ [[∞Grpd]]. Assume we have already defined $Cat_{(\infty,n)}$, either by one of the methods above, or by the induction in the following. Then the canonical inclusion \begin{displaymath} Grpd(Cat_{(\infty,0)}) \hookrightarrow PreCat_{Grpd(Cat_{(\infty,0)})} (Cat_{(\infty,n)}) \end{displaymath} into the $(\infty,1)$-category of [[simplicial objects]] $X_\bullet$ in $Cat_{(\infty,n)}$ that \begin{enumerate}% \item satisfy the [[Segal conditions]] \item such that $X_0 \in Cat_{(\infty,0)}$ \end{enumerate} has a [[right adjoint|right]] [[adjoint (∞,1)-functor]] $Core$. \end{defn} (\hyperlink{Lurie}{Lurie, prop. 1.1.14}). \begin{defn} \label{IteratedInternalization}\hypertarget{IteratedInternalization}{} An $(\infty,n+1)$-category is an object $X \in PreCat_{Grpd(Cat_{(\infty,0)})}$ such that $Core(X) \in \infty Grpd \hookrightarrow Grpd(Cat_{(\infty,0)})$. For $n \in \mathcal{N}$ the $(\infty,1)$-category of $(\infty,n)$-categories is \begin{displaymath} Cat_{(\infty,n)} \coloneqq Cat^n(\infty Grpd) \coloneqq Cat(\cdots Cat(Cat_{(\infty,0)}) \cdots) \,. \end{displaymath} \end{defn} (\hyperlink{Lurie}{Lurie, prop. 1.1.14}). \begin{prop} \label{}\hypertarget{}{} The $(\infty,1)$-category $Cat_{(\infty,n)}$ given by def. \ref{IteratedInternalization} is [[equivalence of (∞,1)-categories|equivalent]] to that given by def. \ref{AxiomaticDefinition}. \end{prop} This is prop. \ref{CompleteSegalOvernFoldSimplicialSetsIsPresentation} in view of the presentation discussed \hyperlink{PresentationByCompleteSegal}{below}. \hypertarget{PresentationByCompleteSegal}{}\paragraph*{{Presentation by $n$-fold complete Segal spaces}}\label{PresentationByCompleteSegal} By the discussion \href{category+object+in+an+%28infinity,1%29-category#ModelCategoryPresentations}{here} at \emph{[[category object in an (∞,1)-category]]} we have \begin{prop} \label{}\hypertarget{}{} Write $cSegal_0 \coloneqq sSet_{Quillen}$ for the standard [[model structure on simplicial sets]]. Then recursively for $n \in \mathbb{N}$, $n \geq 1$, there is a model structure on \begin{displaymath} cSegal_n \coloneqq [\Delta^{op}, cSegal_{n-1}] \end{displaymath} which [[presentable (infinity,1)-category|presents]] $Cat^n(\infty Grpd)$. \end{prop} \begin{prop} \label{}\hypertarget{}{} $cSegal_n$ is equivalent to the $CSS(\Delta^{\times n})$ from prop. \ref{CompleteSegalOvernFoldSimplicialSetsIsPresentation}. \end{prop} (\ldots{}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{Generators}{}\subsubsection*{{Generators}}\label{Generators} \begin{prop} \label{}\hypertarget{}{} The [[(∞,1)-category]] $Cat_{(\infty,n)}$ is generated under [[(∞,1)-colimits]] from the $k$-[[globes]] $G_k$ for $k \leq n$: every object is the [[(∞,1)-colimit]] over a diagram of globes. \end{prop} (\hyperlink{BarwickSchommerPries}{B-SP, cor. 8.4}) \begin{prop} \label{}\hypertarget{}{} [[equivalence in an (∞,1)-category|Equivalences]] in the [[(∞,1)-category]] $Cat_{(\infty,n)}$ are detected on [[globes]]: a morphism $f : X \to Y$ in $Cat_{(\infty,n)}$ is an equivalence precisely if for all globes $G_{k \leq n}$ the induced morphism on [[derived hom-space|(∞,1)-categorical hom-spaces]] \begin{displaymath} Cat_{(\infty,n)}(G_k, f) : Cat_{(\infty,n)}(Y, f) \to Cat_{(\infty,n)}(X, f) \end{displaymath} is an equivalence of [[∞-groupoids]]. \end{prop} (\hyperlink{BarwickSchommerPries}{B-SP, cor. 8.5}) \hypertarget{truncated_objects}{}\subsubsection*{{Truncated objects}}\label{truncated_objects} \begin{prop} \label{GauntIs0Truncated}\hypertarget{GauntIs0Truncated}{} The [[truncated object in an (∞,1)-category|truncated objects]] in the [[(∞,1)-category]] $Cat_{(\infty,n)}$ are precisely the \hyperlink{GauntStrictNCategories}{gaunt} [[strict n-categories]] \end{prop} (\hyperlink{BarwickSchommerPries}{B-SP, cor. 8.6}) \begin{remark} \label{}\hypertarget{}{} That 0-truncated objects in the $Cat_{(\infty,n)}$ regarded as an $(\infty,1)$-category are gaunt is effectively the definition of 0-truncation in the absence of non-invertibles [[transfors]]. That these gaunt $(\infty,n)$-categories are then necessarily \emph{[[strict n-category|strict]]} reflects the fact that all the weakening, namely all the [[associators]] and [[unitors]] as well as all there [[coherence|coherences]] need to be invertible [[k-morphisms]], and hence must be trivial if there are no non-trivial such. \end{remark} \hypertarget{moduli}{}\subsubsection*{{Moduli}}\label{moduli} \begin{prop} \label{AutomorphismInfinityGroup}\hypertarget{AutomorphismInfinityGroup}{} Let $Models_{(\infty,n)} \hookrightarrow \hat Cat_{(\infty,1)}$ be the [[core]] (maximal [[∞-groupoid]] inside) the full [[sub-(∞,1)-category]] of [[(∞,1)Cat]] on those that satisfy the definition \ref{AxiomaticDefinition}. This is [[equivalence of (∞,1)-categories|equivalent]] to \begin{displaymath} Models_{(\infty,n)} \simeq B (\mathbb{Z}_2)^n, \end{displaymath} the [[delooping]] [[groupoid]] of the [[group]] $(\mathbb{Z}_2)^n$, the $n$-fold [[product]] of the [[group of order 2]] with itself. The nontrivial element $\sigma \in \mathbb{Z}_2$ in the $k$th slot acts by passing to the $k$-opposite $(\infty,n)$-category. \end{prop} (\hyperlink{BarwickSchommerPries}{B-SP, theorem 8.13}) \begin{remark} \label{}\hypertarget{}{} This means that \begin{enumerate}% \item the $(\infty,1)$-category $Cat_{(\infty,n)}$ from def. \ref{AxiomaticDefinition} is uniquely defined, up to [[equivalence of (∞,1)-categories]]; \item the [[automorphism ∞-group]] of $Cat_{(\infty,n)}$ in $\hat Cat_{(\infty,1)}$ is $(\mathbb{Z}_2)^n$, hence the only auto-equivalences are given by forming the $n$ analogs of forming an [[opposite (∞,1)-category]]. \end{enumerate} \end{remark} \begin{proof} The idea is this: One first observes that $Str n Cat_{gaunt}$ from def. \ref{GauntStrictNCategories} has $(\mathbb{Z}_2)^{\times n}$ worth of automorphisms, given by reversing the directions of the [[k-morphisms]]. For this, \begin{enumerate}% \item observe that the identity is the only [[natural transformation]] [[endomorphism]] on $Id : Str n Cat_{gaunt} \to Str n Cat_{gaunt}$: this can be checked on [[globes]] for which one observes that if a functor $G_n \to G_n$ is the identity on $\partial G_n$, then it is so also on the unique $n$-cell. (\hyperlink{BarwickSchomerPries}{B-SP, lemma 4.1}) \item observe that every autoequivalence of $Str n Cat_{gaunt}$ restricts to one on the [[globe category]] $\mathbb{G}_n$ (\hyperlink{BarwickSchomerPries}{B-SP, lemma 4.4}). \item observe that the only autoequivalences of $\mathbb{G}_n$ are those that reverse the direction of the $k$-morphisms for $1 \leq k \neq n$, which with the above implies the same for all of $Str n Cat_{gaunt}$ (\hyperlink{BarwickSchomerPries}{B-SP, lemma 4.5}). \end{enumerate} Now us that, by the \hyperlink{Generators}{above discussion}, $Str n Cat_{gaunt}$ generates all of $Cat_{(\infty,n)}$ under [[(∞,1)-colimits]]. \end{proof} \hypertarget{WebOfQuillenEquivalences}{}\subsubsection*{{Web of Quillen equivalent model category presentations}}\label{WebOfQuillenEquivalences} We list [[model category]] structures that [[presentable (infinity,1)-category|present]] $Cat_{(\infty,n)}$ and [[Quillen equivalences]] between them. In the following $A$ is an [[model category]] presenting $Cat_{(\infty,n-1)}$ that is an ``absolute distributor'' in the sense discussed at \emph{[[category object in an (∞,1)-category]]}. (That includes most of the model structures in the table, so that one can recurse over these constructions.) \newline | [[model structure for Segal categories|projective structure for]] $A$-[[Segal categories]] | $\stackrel{inclusion}{\leftarrow}$ | $A$-[[enriched categories]] | | \hyperlink{Lurie}{Lurie, theorem 2.2.16} | | [[model structure for Segal categories|injective structure for]] $A$-[[Segal categories]] | $\stackrel{UnPre}{\to}$ | [[model structure for complete Segal spaces|complete Segal space objects]] in $A$ | | \hyperlink{Lurie}{Lurie, prop 2.3.1} | | [[Theta-space|Theta-(n-1)-space]]-[[Segal categories]] | | [[Theta-space|Theta-(n-1)-space]]-[[enriched categories]] | | (\hyperlink{BergnerRezk}{Bergner-Rezk, prop. 7.2}) | |$\vdots$| |$\vdots$| | | \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{special_cases}{}\subsubsection*{{Special cases}}\label{special_cases} \begin{itemize}% \item [[∞-groupoid]] = $(\infty,0)$-category \item [[(∞,1)-category]] \item [[(∞,2)-category]] \item etc \ldots{} \end{itemize} In addition, \begin{itemize}% \item [[(n,r)-category|(m,n)-categories]] can be obtained as particular $(\infty,n)$-categories whose $k$-cells are trivial for $k\gt m$. \item In particular, [[n-categories]] = $(n,n)$-categories can be so obtained. \end{itemize} \hypertarget{specific_examples}{}\subsubsection*{{Specific examples}}\label{specific_examples} \begin{itemize}% \item One motivating example for $(\infty,n)$-categories is the [[(∞,n)-category of cobordisms]] which plays a central role in the formalization of the [[cobordism hypothesis]]. \item Another class of examples are [[(∞,n)-categories of spans]]. \end{itemize} \hypertarget{extra_structure_and_properties}{}\subsection*{{Extra structure and properties}}\label{extra_structure_and_properties} We discuss extra [[structure]] that an [[(∞,n)-category]] can carry and extra [[properties]] that it may enjoy. \hypertarget{monoidal_categories}{}\subsubsection*{{$\mathcal{O}$-Monoidal $(\infty,n)$-categories}}\label{monoidal_categories} \begin{itemize}% \item [[monoidal (∞,1)-category]] \item [[symmetric monoidal (∞,n)-category]] \end{itemize} \hypertarget{categories_with_all_adjoints}{}\subsubsection*{{$(\infty,n)$-Categories with all adjoints}}\label{categories_with_all_adjoints} \begin{itemize}% \item [[(∞,n)-category with all adjoints]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[0-category]], [[(0,1)-category]] \item [[category]] \item [[2-category]] \item [[3-category]] \item [[n-category]] \item [[(∞,0)-category]] \item [[(∞,1)-category]] \begin{itemize}% \item [[table - models for (∞,1)-categories]] \end{itemize} \item [[(∞,2)-category]] \item \textbf{(∞,n)-category} \begin{itemize}% \item [[category object in an (∞,1)-category]] \item [[n-category object in an (∞,1)-category]] \item [[n-fold complete Segal space]] \item [[Theta-space]], [[n-quasicategory]], [[model structure on cellular sets]] \item [[symmetric monoidal (∞,n)-category]] \end{itemize} \item [[(n,r)-category]] \item [[(∞,n)-sheaf]], [[(∞,n)-topos]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Definition in terms of [[n-fold complete Segal spaces]] and [[Segal n-categories]] are due to the (unpublished) thesis \begin{itemize}% \item [[Clark Barwick]], \emph{$(\infty,n)$-$Cat$ as a closed model category} PhD (2005) \end{itemize} The definition in terms of [[Theta spaces]] is due to \begin{itemize}% \item [[Charles Rezk]], \emph{A cartesian presentation of weak n-categories} (\href{http://arxiv.org/abs/0901.3602}{arXiv:0901.3602}) \end{itemize} An iterartive definition in terms of [[n-fold complete Segal spaces]] is given in \begin{itemize}% \item [[Jacob Lurie]], \emph{$(\infty,2)$-Categories and the Goodwillie Calculus I} (\href{http://arxiv.org/abs/0905.0462}{arXiv:0905.0462}) \end{itemize} A summary of definitions and some known comparison results can be found in \begin{itemize}% \item [[Julie Bergner]], \emph{Models for $(\infty,n)$-Categories and the Cobordism Hypothesis} , in [[Urs Schreiber]], [[Hisham Sati]] (eds.) \emph{[[Mathematical Foundations of Quantum Field and Perturbative String Theory]]}, Proceedings of Symposia in Pure Mathematics, volume 83 AMS (2011) (\href{http://arxiv.org/abs/1011.0110}{arXiv:1011.0110}) \end{itemize} A textbook account focusing on [[n-fold complete Segal spaces]] and related models is in \begin{itemize}% \item [[Simona Paoli]], \emph{Simplicial Methods for Higher Categories -- Segal-type Models of Weak $n$-Categories}, Springer 2019 (\href{https://doi.org/10.1007/978-3-030-05674-2}{doi:10.1007/978-3-030-05674-2}, \href{https://link.springer.com/content/pdf/bfm%3A978-3-030-05674-2%2F1.pdf}{toc pdf}) \end{itemize} One axiomatic characterization is in \begin{itemize}% \item [[Clark Barwick]], [[Chris Schommer-Pries]], \emph{On the Unicity of the Homotopy Theory of Higher Categories} (\href{http://arxiv.org/abs/1112.0040}{arXiv:1112.0040}, \href{http://prezi.com/w0ykkhh5mxak/the-uniqueness-of-the-homotopy-theory-of-higher-categories/}{slides}) \end{itemize} Comparison of models ($\Theta_{n+1}$-spaces and [[enriched (infinity,1)-categories]] in $\Theta_n$-spaces) is in \begin{itemize}% \item [[Julie Bergner]], [[Charles Rezk]], \emph{Comparison of models for $(\infty,n)$-categories} (\href{http://arxiv.org/abs/1204.2013}{arXiv:1204.2013}) \item [[Julie Bergner]], [[Charles Rezk]], \emph{Comparison of models for $(\infty,n)$-categories II} (\href{http://arxiv.org/abs/1406.4182}{arXiv:1406.4182}) \item [[Rune Haugseng]], \emph{On the equivalence between $\Theta_n$-spaces and iterated Segal spaces}, \href{https://arxiv.org/abs/1604.08480}{arXiv} \item [[Julie Bergner]], \emph{A survey of models for $(\infty,n)$-categories} (\href{https://arxiv.org/abs/1810.10052}{arXiv:1810.10052}) \end{itemize} A model for $(\infty,n)$-categories in terms of [[(∞,1)-sheaves]] on variant of a [[site]] of $n$-[[dimension|dimensional]] [[manifolds]] with [[embeddings]] between them is discussed in \begin{itemize}% \item [[David Ayala]], [[Nick Rozenblyum]], \emph{Weak $n$-categories are sheaves on iterated submersions of $\leq n$-manifolds} (in preparation) \end{itemize} previewed in \begin{itemize}% \item [[David Ayala]], \emph{Higher categories are sheaves on manifolds}, talk at \emph{\href{http://www.nd.edu/~cmnd/conferences/topology/}{FRG Conference on Topology and Field Theories}}, U. Notre Dame (2012) (\href{http://www.youtube.com/watch?v=8nm2ByS5NnY}{video}) \textbf{Abstract} [[topological chiral homology|Chiral]]/[[factorization homology]] gives a procedure for constructing a [[topological field theory]] from the data of an [[En-algebra]]. I'll explain a mulit-object version of this construction which produces a topological field theory from the data of an $n$-category with adjoints. This construction is a consequence of a more primitive result which asserts an equivalence between [[(infinity,n)-category|n-categories]] with adjoints and ``transversality sheaves'' on [[framed manifold|framed]] $n$-[[manifolds]] - of which there is an abundance of examples. \end{itemize} This lends itself to a model of \emph{[[(∞,n)-category with adjoints]]}. See there for more. The first globular and algebraic models of $(\infty,n)$-categories is in \begin{itemize}% \item [[Camell Kachour]], Algebraic Definition of weak $(\infty,n)$-Categories, Published in Theory and Applications of Categories (2015), Volume 30, No. 22, pages 775-807: \href{http://tac.mta.ca/tac/volumes/30/22/30-22abs.html}{journal web site} \end{itemize} A model structure using [[complicial sets]] is in \begin{itemize}% \item [[Viktoriya Ozornova]], Martina Rovelli, Model structures for (∞,n)-categories on (pre)stratified simplicial sets and prestratified simplicial spaces, \href{https://arxiv.org/abs/1809.10621}{arxiv} \end{itemize} [[!redirects (infinity,r)-category]] [[!redirects (infinity,k)-category]] [[!redirects (infinity,r)-categories]] [[!redirects (infinity,k)-categories]] [[!redirects (∞,n)-category]] [[!redirects (∞,n)-categories]] [[!redirects (infinity,n)-categories]] [[!redirects (∞,r)-category]] [[!redirects (∞,r)-categories]] [[!redirects (∞,k)-category]] [[!redirects (∞,k)-categories]] \end{document}