\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{(infinity,n)-category of correspondences} [[!redirects (infinity,n)-category of spans]] \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{direct_definition}{Direct definition}\dotfill \pageref*{direct_definition} \linebreak \noindent\hyperlink{DefinitionViaCoalgebras}{Definition via coalgebras}\dotfill \pageref*{DefinitionViaCoalgebras} \linebreak \noindent\hyperlink{PhasedTensorProduct}{With the phased tensor product}\dotfill \pageref*{PhasedTensorProduct} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{FullDualizability}{Full dualizability}\dotfill \pageref*{FullDualizability} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The generalization of the [[bicategory]] \emph{[[Span]]} to [[(∞,n)-categories]]: An \emph{$(\infty,n)$-category of correspondences} in [[∞-groupoid]] is an [[(∞,n)-category]] whose \begin{itemize}% \item [[objects]] are [[∞-groupoids]]; \item [[morphism]]s $X \to Y$ are [[correspondences]] \begin{displaymath} \itexarray{ && Z \\ & \swarrow && \searrow \\ X &&&& Y } \end{displaymath} in [[∞Grpd]] \item [[2-morphisms]] are correspondences of correspondences \begin{displaymath} \itexarray{ && Z \\ & \swarrow &\uparrow& \searrow \\ X &&Q&& Y \\ & \nwarrow &\downarrow& \nearrow \\ && Z' } \end{displaymath} (where the triangular sub-[[diagram]]s are filled with [[2-morphism]]s in [[∞Grpd]] which we do not display here) \item and so on up to [[k-morphism|n-morphism]]s \item $k \gt n$-morphisms are equivalences of order $(k-n)$ of higher correspondences. \end{itemize} Using the symmetric monoidal structure on [[∞Grpd]] this becomes a [[symmetric monoidal (∞,n)-category]]. More generally, for $C$ some [[symmetric monoidal (∞,n)-category]], there is a symmetric monoidal $(\infty,n)$-category of correspondences over $C$, whose \begin{itemize}% \item [[object]]s are [[∞-groupoid]]s $X$ equipped with an [[(∞,n)-functor]] $X \to C$; \item [[morphism]]s $X \to Y$ are [[correspondences]] in [[(∞,1)Cat]] over $C$ \begin{displaymath} \itexarray{ && Z \\ & \swarrow && \searrow \\ X &&\swArrow&& Y \\ & \searrow && \swarrow \\ && C } \end{displaymath} \item and so on. \end{itemize} Even more generally one can allow the [[∞-groupoid]]s $X, Y, \cdots$ to be [[(∞,n)-categories]] themselves. \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} \hypertarget{direct_definition}{}\subsubsection*{{Direct definition}}\label{direct_definition} The [[(∞,2)-category]] of correspondences in [[∞Grpd]] is discussed in some detail in (\hyperlink{DyckerhoffKapranov12}{Dyckerhoff-Kapranov 12, section 10}). A sketch of the definition for all $n$ was given in (\hyperlink{Lurie}{Lurie, page 57}). A fully detailed version of this definition is in (\hyperlink{Haugseng14}{Haugseng 14}). \hypertarget{DefinitionViaCoalgebras}{}\subsubsection*{{Definition via coalgebras}}\label{DefinitionViaCoalgebras} In (\hyperlink{BenZviNadler13}{BenZvi-Nadler 13, remark 1.17}) it is observed that \begin{displaymath} Corr_n(\mathbf{H}) \simeq E_n Alg_b(\mathbf{H}^{op}) \end{displaymath} is equivalently the [[(∞,n)-category]] of [[En-algebras]] and [[(∞,1)-bimodules]] between them in the [[opposite (∞,1)-category]] of $\mathbf{H}$ (since every object in a cartesian category is uniquely a [[coalgebra]] by its [[diagonal]] map). (This immediately implies that every object in $Corr_n(\mathbf{H})$ is a self-[[fully dualizable object]].) To see how this works, consider $X \in \mathbf{H}$ any object regarded as a coalgebra in $\mathbf{H}$ via its [[diagonal map]] (\href{cartesian+monoidal+infinity%2C1-category#CoalgebraObjects}{here}). Then a [[comodule]] $E$ over it is a [[co-action]] \begin{displaymath} E \to E \times X \end{displaymath} and hence is canonically given by just a map $E \to X$. Then for \begin{displaymath} \itexarray{ && E_1 &&&& E_2 \\ & \swarrow && \searrow && \swarrow && \searrow \\ X && && Y && && Z } \end{displaymath} two consecutive correspondences, now interpreted as two bi-comodules, their [[tensor product]] of comodules over $Y$ as a coalgebra is the limit over \begin{displaymath} E_1 \times E_2 \stackrel{\to}{\to} E_1 \times Y \times E_2 \stackrel{\to}{\stackrel{\to}{\to}} ... \end{displaymath} This is indeed the fiber product \begin{displaymath} E_1 \underset{Y}{\times} E_2 \stackrel{(p_1, p_2)}{\to} E_1 \times E_2 \end{displaymath} as it should be for the composition of [[correspondences]]. \hypertarget{PhasedTensorProduct}{}\subsubsection*{{With the phased tensor product}}\label{PhasedTensorProduct} \begin{defn} \label{InSliceWithPhasedTensorProduct}\hypertarget{InSliceWithPhasedTensorProduct}{} For $\mathbf{H}$ an [[(∞,1)-topos]] and $\mathcal{C} \in Cat_{(\infty,n)}(\mathbf{H})$ a [[symmetric monoidal (∞,n)-category|symmetric monoidal]] [[internal (∞,n)-category]] then there is a [[symmetric monoidal (∞,n)-category]] \begin{displaymath} Corr_n(\mathbf{H}_{/\mathcal{C}})^\otimes \in SymmMon (\infty,n)Cat \end{displaymath} whose [[k-morphisms]] are $k$-fold correspondence in $\mathbf{H}$ over $k$-fold correspondences in $\mathcal{C}$, and whose monoidal structure is given by \begin{displaymath} \left[ \itexarray{ X_1 \\ \downarrow^{\mathrlap{\mathbf{L}_1}} \\ \mathcal{C}_0 } \right] \otimes \left[ \itexarray{ X_2 \\ \downarrow^{\mathrlap{\mathbf{L}_2}} \\ \mathcal{C}_0 } \right] \coloneqq \left[ \itexarray{ X_1 \times X_2 \\ \downarrow^{\mathrlap{(\mathbf{L}_1, \mathbf{L}_2)}} \\ \mathcal{C}_0 \times \mathcal{C}_0 \\ \downarrow^{\mathrlap{\otimes_{\mathcal{C}}}} \\ \mathcal{C}_0 } \right] \,. \end{displaymath} \end{defn} This is (\hyperlink{Haugseng14}{Haugseng 14, def. 4.6, corollary 7.5}) \begin{remark} \label{}\hypertarget{}{} If $\mathcal{C}_0$ is (or is regarded as) a [[moduli stack]] for some kind of bundles forming a [[linear homotopy type theory]] over $\mathbf{H}$, then the phased tensor product is what is also called the \emph{[[external tensor product]]}. \end{remark} \begin{example} \label{}\hypertarget{}{} Examples of phased tensor products include \begin{itemize}% \item the \href{species#HoTTCauchyProduct}{Cauchy product of species}; \item some [[external tensor products]] in [[indexed monoidal categories]]; \end{itemize} \end{example} \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{FullDualizability}{}\subsubsection*{{Full dualizability}}\label{FullDualizability} \begin{prop} \label{CorrnGrpdHasDuals}\hypertarget{CorrnGrpdHasDuals}{} $Corr_n(\infty Grpd)$ is a [[symmetric monoidal (∞,n)-category|symmetric monoidal]] [[(∞,n)-category with duals]]. More generally, if $\mathcal{C}$ is a symmetric monoidal $(\infty,n)$-category with duals, then so is $Corr_n(\infty Grpd,\mathcal{C})^\otimes$ equipped with the phased tensor product of prop. \ref{InSliceWithPhasedTensorProduct}. In particular every object in these is a [[fully dualizable object]]. \end{prop} This appears as (\hyperlink{Lurie}{Lurie, remark 3.2.3}). A proof is written down in (\hyperlink{Haugseng14}{Haugseng 14, corollary 6.6}). \begin{conjecture} \label{}\hypertarget{}{} The canonical $O(n)$-[[∞-action]] on $Corr_n(\infty Grpd)$ induced via prop. \ref{CorrnGrpdHasDuals} by the [[cobordism hypothesis]] (see there at \emph{\href{cobordism+hypothesis#TheCanonicalOnAction}{the canonical O(n)-action}}) is trivial. \end{conjecture} This statement appears in (\hyperlink{Lurie}{Lurie, below remark 3.2.3}) without formal proof. For more see (\hyperlink{Haugseng14}{Haugseng 14, remark 9.7}). More generally: \begin{prop} \label{}\hypertarget{}{} For $\mathbf{H}$ an [[(∞,1)-topos]], then $Corr_n(\mathbf{H})$ is an [[(∞,n)-category with duals]]. And generally, for $\mathcal{C} \in SymmMon (\infty,n)Cat(\mathbf{H})$ a [[symmetric monoidal (∞,n)-category]] [[internal (∞,n)-category|internal]] to $\mathbf{C}$, then $Corr_n(\mathbf{H}_{/\mathbf{C}})$ equipped with the phased tensor product of prop. \ref{InSliceWithPhasedTensorProduct} is an [[(∞,n)-category with duals]] \end{prop} (\hyperlink{Haugseng14}{Haugseng 14, cor. 7.8}) Let $Bord_n$ be the [[(∞,n)-category of cobordisms]]. \begin{prop} \label{HomsFromBordIntoSpan}\hypertarget{HomsFromBordIntoSpan}{} The following data are equivalent \begin{enumerate}% \item Symmetric monoidal $(\infty,n)$-functors \begin{displaymath} Bord_n \to Corr_n(\infty Grpd) \end{displaymath} \item Pairs $(X,V)$, where $X$ is a [[topological space]] and $V \to X$ a [[vector bundle]] of [[rank]] $n$. \end{enumerate} \end{prop} This appears as (\hyperlink{Lurie}{Lurie, claim 3.2.4}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[symplectic category]] \item [[span trace]] \item [[relations]], [[bicategory of relations]] \item [[sheaf with transfer]], [[Mackey functor]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} For references on 1- and 2-categories of spans see at \emph{[[correspondences]]}. An explicit definition of the [[(∞,2)-category]] of spans in [[∞Grpd]] is in section 10 of \begin{itemize}% \item Tobias Dyckerhoff, [[Mikhail Kapranov]], \emph{Higher Segal spaces I}, (\href{http://arxiv.org/abs/1212.3563}{arxiv:1212.3563}) \end{itemize} An inductive definition of the [[symmetric monoidal (∞,n)-category]] $Span_n(\infty Grpd)/C$ of spans of [[∞-groupoid]] over a symmetric monoidal $(\infty,n)$-category $C$ is sketched in section 3.2 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[On the Classification of Topological Field Theories]]} \end{itemize} there denoted $Fam_n(C)$. Notice the heuristic discussion on page 59. More detailed discussion is given in \begin{itemize}% \item [[Rune Haugseng]], \emph{Iterated spans and ``classical'' topological field theories} (\href{http://arxiv.org/abs/1409.0837}{arXiv:1409.0837}) \item [[Yonatan Harpaz]], \emph{Ambidexterity and the universality of finite spans} (\href{https://arxiv.org/abs/1703.09764}{arXiv:1703.09764}) \end{itemize} Both articles comment on the relation to [[schreiber:Local prequantum field theory]]. The generalization to an $(\infty,n)$-category $Span_n((\infty,1)Cat^Adj)$ of spans between [[cobordism hypothesis|(∞,n)-categories with duals]] is discussed on p. 107 and 108. The extension to the case when the ambient $\infty$-topos is varied is in \begin{itemize}% \item [[David Li-Bland]], \emph{The stack of higher internal categories and stacks of iterated spans}, (\href{http://arxiv.org/abs/1506.08870}{arXiv:1506.08870}) \end{itemize} The application of $Span_n(\infty Grpd/C)$ to the construction of [[FQFT]]s is further discussed in section 3 of \begin{itemize}% \item [[Dan Freed]], [[Mike Hopkins]], [[Jacob Lurie]], [[Constantin Teleman]], \emph{[[Topological Quantum Field Theories from Compact Lie Groups]]} \end{itemize} Discussion of $Span_n(\mathbf{H}) \simeq Alg_{E_n}(\mathbf{H}^{op})$ is around remark 1.17 of \begin{itemize}% \item [[David Ben-Zvi]], [[David Nadler]], \emph{Nonlinear traces} (\href{http://arxiv.org/abs/1305.7175}{arXiv:1305.7175}) \end{itemize} A discussion of a version $Span(B)$for $B$ a [[2-category]] with $Span(B)$ regarded as a [[tricategory]] and then as a 1-object [[tetracategory]] is in \begin{itemize}% \item [[Alex Hoffnung]], \emph{Spans in 2-Categories: A monoidal tricategory} (\href{http://arxiv.org/abs/1112.0560}{arXiv:1112.0560}) \end{itemize} A discussion that $Span_2(-)$ in a [[2-category]] with weak [[finite limits]] is a [[compact closed 2-category]]: \begin{itemize}% \item [[Mike Stay]], \emph{Compact Closed Bicategories} (\href{http://arxiv.org/abs/1301.1053}{arXiv:1301.1053}) \end{itemize} See also \begin{itemize}% \item [[David Ayala]], [[John Francis]], \emph{Fibrations of $\infty$-Categories} (\href{https://arxiv.org/abs/1702.02681}{arXiv:1702.02681}) \end{itemize} Coisotropic orrespondences for derived Poisson stacks: \begin{itemize}% \item [[Rune Haugseng]], Valerio Melani, [[Pavel Safronov]], \emph{Shifted Coisotropic Correspondences} (\href{https://arxiv.org/abs/1904.11312}{arXiv:1904.11312}) \end{itemize} [[!redirects (∞,n)-category of spans]] [[!redirects (∞,n)-categories of spans]] [[!redirects (infinity,n)-categories of spans]] [[!redirects (∞,n)-category of correspondences]] [[!redirects (∞,n)-categories of correspondences]] [[!redirects (infinity,n)-category of correspondences]] [[!redirects (infinity,n)-categories of correspondences]] [[!redirects (∞,1)-category of correspondences]] [[!redirects (∞,1)-categories of corespondences]] [[!redirects (infinity,1)-category of correspondences]] [[!redirects (infinity,1)-categories of correspondences]] [[!redirects (2,1)-category of correspondences]] [[!redirects (2,1)-categories of correspondences]] [[!redirects higher correspondence]] [[!redirects higher correspondences]] [[!redirects higher category of correspondences]] [[!redirects higher categories of correspondences]] [[!redirects n-fold corespondence]] [[!redirects n-fold corespondences]] [[!redirects n-fold correspondence]] [[!redirects n-fold correspondences]] [[!redirects (∞,n)-category of n-fold correspondences]] [[!redirects (infinity,n)-category of n-fold correspondences]] [[!redirects phased tensor product]] [[!redirects phased tensor products]] \end{document}