\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{(infinity,n)-module} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{higher_linear_algebra}{}\paragraph*{{Higher linear algebra}}\label{higher_linear_algebra} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{vector_spaces}{$(\infty,1)$-vector spaces}\dotfill \pageref*{vector_spaces} \linebreak \noindent\hyperlink{2modules}{2-Modules}\dotfill \pageref*{2modules} \linebreak \noindent\hyperlink{3modules}{3-Modules}\dotfill \pageref*{3modules} \linebreak \noindent\hyperlink{4modules}{4-Modules}\dotfill \pageref*{4modules} \linebreak \noindent\hyperlink{representations}{$n$-Representations}\dotfill \pageref*{representations} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A notion of \emph{$n$-module} ($n$-vector space) is a [[categorification]] of the notion of [[module]] ([[vector space]]). There are various different notions of $n$-vector spaces. One notion is: an $n$-vector space is a [[chain complex]] of [[vector space]]s in degrees 0 to $n$. For $n=2$ this is a [[Baez-Crans 2-vector space]]. This is useful for lots of things, but tends to be too restrictive in other contexts. Another is, recursively: an $(n-1)$-algebra object (or its $(n-1)$-category of modules) in the $n$-category of $(n-1)$-bimodules. For higher $n$ this is envisioned in (\href{FHLT}{FHLT, section 7}), details are in spring. It includes the previous concept as a special case. For $n=2$ this subsumes various other definitions of [[2-vector space]] that are in the literature, such as notably the notion of [[Kapranov-Voevodsky 2-vector space]]. We sketch the iterative definition of $n$-vector spaces. More details are below. Assume that a notion of [[n-category]] is chosen for each $n$ (for instance [[(n,1)-category]]), that a notion of [[symmetric monoidal category|symmetric monoidal]] $n$-category is fixed (for instance [[symmetric monoidal (∞,1)-category]]) and that a notion of (weak) commutative [[monoid]] objects and [[module]] and [[bimodule]] object in a symmetric monoidal $n$-category is fixed (for instance the notion of [[algebra in an (∞,1)-category]]). Then we have the following recursive (rough) definition: fix a ground [[field]] $k$. \begin{itemize}% \item a 0-vector space over $k$ is an elemment of $k$. The [[0-category]] of 0-vector spaces is the set \begin{displaymath} 0 Vect_k = k \,. \end{displaymath} \item The category $1 Vect_k$ is just [[Vect]]. \item For $n \gt 1$, the [[n-category]] $n Vect$ of \textbf{$n$-vector spaces} over $k$ is the $n$-category with objects algebra objects in $(n-1)Vect$ and morphisms bimodule objects in $(n-1)Vect$. \end{itemize} Here we think of an algebra object $A \in (n-1)Vect$ as a basis for the $n$-vector space which is the $(n-1)$-category $A Mod$. With this definition we have that $2 Vect$ is the [[2-category]] of $k$-[[algebra]]s, [[bimodule]]s and bimodule homomorphisms. More generally, let $k$ here be a [[ring spectrum]]. Set \begin{itemize}% \item $(\infty,0)Vect_k := k$ -- a [[symmetric monoidal (infinity,1)-category|symmetric monoidal]] [[∞-groupoid]]; \item $(\infty,1)Vect_k := k Mod$ the [[symmetric monoidal (∞,1)-category]] of modules over that ring spectrum; \item $(\infty,n)Vect_k := (\infty,n-1) Mod$ the [[symmetric monoidal (∞,n)-category]] of modules over $(\infty,n-1)Mod$. \end{itemize} \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} Following the \href{IteratedModules}{above idea} we have the following definition. \begin{defn} \label{nVectViaALgObjects}\hypertarget{nVectViaALgObjects}{} Fix a [[ring]] $k$ (usually taken to be a [[field]] if one speaks of ``vector spaces'' instead of just [[module]]s, but this is not actually essential for the construction). This may be an [[ring spectrum|∞-ring]]. For $n \in \mathbb{N}$, define an [[symmetric monoidal (∞,n)-category]] $n Vect_k$ of \textbf{$(\infty,n)$-vector spaces} as follows (the bi-counting follows the pattern of [[(n,r)-categories]]). An \textbf{$(\infty,0)$-vector space} is an element of $k$. If $k$ is an ordinary ring, then the [[0-category]] $0 Vect$ is the underlying set of $k$, regarded as a [[symmetric monoidal category]] using the product structure on $k$. If $k$ is more generally an [[ring spectrum|∞-ring]], then the ``stabilized [[(∞,0)-category]]'' (= [[spectrum]]) of $(\infty,0)$-vector spaces is $k$ itself: $(\infty,0)Vect_k \simeq k$. An \textbf{[[(∞,1)-vector space]]} is an [[module spectrum|∞-module]] over $k$. The [[(∞,1)-category]] of $(\infty,1)$-vector spaces is \begin{displaymath} (\infty,1)Vect_k := k Mod \,, \end{displaymath} the $(\infty,1)$-category of $k$-[[module spectra]]. For $k$ a field ordinary [[vector space]]s over $k$ are a [[full sub-(∞,1)-category]] of this: $1Vect_k \hookrightarrow (\infty,1)Vect_k$ . For $n \geq 2$, an \textbf{$(\infty,n)$-vector space} is an [[algebra in an (infinity,1)-category|algebra object in the symmetric monoidal (∞,1)-category]] $(\infty,n-1)Vect$. A [[morphism]] is a [[bimodule object]]. [[k-morphism|Higher morphisms]] are defined recursively. \end{defn} For $\infty$ replaced by $n$ this appears as (\hyperlink{Schreiber}{Schreiber, appendix A}) and then with allusion to more sophisticated [[higher category theory|higher categorical]] tools in (\hyperlink{FHLT}{FHLT, def. 7.1}). Notice that FHLT say ``$(n-1)$-algebra'' instead of ``$n$-vector space'', but only for the reason (p. 29) that \begin{quote}% The discrepancy between $m$ (the algebra level) and $n$ the algebra level -- for which we apologize -- is caused by the fact that the term ``$n$-vector space'' has been used for a much more restrictive notion than our $(n-1)$-algebras. \end{quote} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{vector_spaces}{}\subsubsection*{{$(\infty,1)$-vector spaces}}\label{vector_spaces} See [[(∞,1)-vector space]] for more. \hypertarget{2modules}{}\subsubsection*{{2-Modules}}\label{2modules} \begin{remark} \label{}\hypertarget{}{} The symmetric monoidal 3-category $Alg_k^b = 2 Mod_k$ of [[2-modules]] over $k$ is: \begin{itemize}% \item [[objects]] are [[associative algebras]] over $k$; \item [[morphisms]] are [[bimodules]] of associative algebras; [[composition]] is the [[tensor product]] of bimodules; \item [[2-morphisms]] are bimodule homomorphisms. \end{itemize} We think of this equivalently as its essential image in $Vect_k Mod$, where \begin{itemize}% \item an algebra $A$ is a placeholder for its [[module category]] $Mod_A$; \item an $A$-$B$ [[bimodule]] $N$ is a placeholder for the [[functor]] \begin{displaymath} Mod_A \stackrel{(-) \otimes_A N }{\to} Mod_B \end{displaymath} \item a bimodule homomorphism is a placeholder for a [[natural transformation]] of two such functors. \end{itemize} If we think of an algebra $A$ in terms of its [[delooping]] [[Vect]]-[[enriched category]] $B A$, then we have an [[equivalence of categories]] \begin{displaymath} Mod_A \simeq Vect Cat(B A, Vect) \,. \end{displaymath} Comparing this for the formula \begin{displaymath} V \simeq Set(S,k) \end{displaymath} for a $k$-vector space $V$ with [[basis]] $S$, we see that we may \begin{itemize}% \item think of the algebra objects appearing in the above as being \emph{bases} for a higher vector space; \item think of the bimodules as being higher [[matrix|matrices]]. \end{itemize} \end{remark} \hypertarget{3modules}{}\subsubsection*{{3-Modules}}\label{3modules} A \emph{3-vector space} according to def. \ref{nVectViaALgObjects} is \begin{itemize}% \item a $k$-algebra $A$; \item equipped with an $A$-$A\otimes A$-[[bimodule]] defining the 2-multiplication, and a left $A$-[[module]] defining the unit. \end{itemize} Equivalently this is a [[sesquiunital sesquialgebra]]. Classes of examples come from the following construction: \begin{itemize}% \item Every \emph{commutative} [[associative algebra]] $A$ becomes a 3-vector space. \item Every [[Hopf algebra]] canonically becomes a 3-vector space (amplified in \hyperlink{FHLT}{FHLT, p. 27}). More generally: every [[hopfish algebra]]. \end{itemize} \hypertarget{4modules}{}\subsubsection*{{4-Modules}}\label{4modules} Next, an algebra object internal to $2 Alg_k^b = 3Mod_3$, is an algebra equipped with three compatible algebra structures, a [[trialgebra]]. Its [[category of modules]] is a [[monoidal category]] equipped with two compatible product structures a [[Hopf category]]. The 2-category of 2-modules of that is a [[monoidal 2-category]]. For a review see (\href{BaezLauda}{Baez-Lauda 09, p. 98}). \hypertarget{representations}{}\subsection*{{$n$-Representations}}\label{representations} See [[infinity-representation]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[vector space]], \item [[(∞,1)-module]], [[(∞,1)-module bundle]], [[(∞,1)-category of (∞,1)-modules]] \item [[2-ring]], [[2-module]] \item [[2-vector space]] \begin{itemize}% \item \emph{[[TwoVect]]} is a Mathematica software package for computer algebra with 2-vector spaces \end{itemize} \item \textbf{$n$-vector space}, [[n-vector bundle]], \end{itemize} [[!include structure on algebras and their module categories - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} The notion of $n$-vector spaces is (defined for $n = 2$ and sketched recursively for greater $n$) in appendix A of \begin{itemize}% \item [[Urs Schreiber]], \emph{AQFT from $n$-functorial QFT} Communications in Mathematical Physics, Volume 291, Issue 2, pp.357-401 (2008) (\href{http://ncatlab.org/schreiber/files/AQFTfromFQFT.pdf}{pdf}) \end{itemize} section 7 of \begin{itemize}% \item [[Dan Freed]], [[Mike Hopkins]], [[Jacob Lurie]], [[Constantin Teleman]], \emph{[[Topological Quantum Field Theories from Compact Lie Groups]]} (2009) \end{itemize} Full details are in \begin{itemize}% \item [[Rune Haugseng]], \emph{The higher Morita category of $E_n$-algebras} (\href{http://arxiv.org/abs/1412.8459}{arXiv:1412.8459}) \end{itemize} Review of work on 4-modules (implicitly) as [[trialgebras]]/[[Hopf monoidal categories]] is around p. 98 of \begin{itemize}% \item [[John Baez]], [[Aaron Lauda]], \emph{A prehistory of $n$-categorical physics}, in \emph{Deep beauty}, 13-128, Cambridge Univ. Press, Cambridge, 2011 (\href{http://arxiv.org/abs/0908.2469}{arXiv:0908.2469}) \end{itemize} [[!redirects n-vector spaces]] [[!redirects n-vector spaces]] [[!redirects nMod]] [[!redirects (∞,n)-vector space]] [[!redirects (infinity,n)-vector space]] [[!redirects (∞,n)-vector spaces]] [[!redirects (infinity,n)-vector spaces]] [[!redirects (infinity,n)-modules]] [[!redirects (∞,n)-module]] [[!redirects (∞,n)-modules]] [[!redirects (infinity,2)-module]] [[!redirects (infinity,2)-modules]] [[!redirects (∞,2)-module]] [[!redirects (∞,2)-modules]] [[!redirects (∞, n)-vector space]] [[!redirects (infinity, n)-vector space]] [[!redirects (∞, n)-vector spaces]] [[!redirects (infinity, n)-vector spaces]] [[!redirects (infinity, n)-modules]] [[!redirects (∞, n)-module]] [[!redirects (∞, n)-modules]] [[!redirects (infinity, 2)-module]] [[!redirects (infinity, 2)-modules]] [[!redirects (∞, 2)-module]] [[!redirects (∞, 2)-modules]] [[!redirects 3-vector space]] [[!redirects 3-vector spaces]] [[!redirects 3-module]] [[!redirects 3-modules]] [[!redirects 4-module]] [[!redirects 4-modules]] [[!redirects 4-vector space]] [[!redirects 4-vector spaces]] [[!redirects 2-algebra]] [[!redirects 2-algebras]] [[!redirects 3-algebra]] [[!redirects 3-algebras]] [[!redirects n-module]] [[!redirects n-modules]] [[!redirects (infinity,n)-vector space]] [[!redirects (infinity, n)-vector space]] [[!redirects n-vector space]] \end{document}