\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{(sub)object classifier in an (infinity,1)-topos} \begin{quote}% This page is about object classifier objects in [[(∞,1)-toposes]]. For the unrelated notion of the [[classifying topos]] of the [[theory of objects]] see at \emph{[[classifying topos for the theory of objects]]}. \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{universes}{}\paragraph*{{Universes}}\label{universes} [[!include universe - contents]] \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{details}{Details}\dotfill \pageref*{details} \linebreak \noindent\hyperlink{DetailsSubObjClassf}{Subobject classifier}\dotfill \pageref*{DetailsSubObjClassf} \linebreak \noindent\hyperlink{DetailsObjClassf}{Object classifier}\dotfill \pageref*{DetailsObjClassf} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{ObjectClassifierInInfinityGroupoid}{Object classifier in $\infty Grpd$}\dotfill \pageref*{ObjectClassifierInInfinityGroupoid} \linebreak \noindent\hyperlink{object_classifier_in_presheaf_toposes}{Object classifier in presheaf $(\infty,1)$-toposes}\dotfill \pageref*{object_classifier_in_presheaf_toposes} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A crucial ingredient in a [[topos]] is a [[subobject classifier]]. From the point of view of [[homotopy theory]], that this has to do with [[subobjects]] turns out to be a coincidence of low dimensions: subobjects are [[(-1)-truncated]] morphisms. As discussed also at [[stuff, structure, property]], the classifying objects in [[higher topos theory]] classify more general morphisms. When one passes all the way to [[∞-toposes]], there should be objects that classify \emph{all} morphisms, subject to some bound on size. This is made precise in the context of [[(∞,1)-topos theory]]. One way to characterize an [[(∞,1)-topos]] is as \begin{itemize}% \item a [[presentable (∞,1)-category]] \item with [[universal colimits]] \item such that for all sufficiently large [[regular cardinal]]s $\kappa$ there is a \textbf{classifying object} for the class of all $\kappa$-compact morphisms in $X$. \end{itemize} This statement is originally due to [[Charles Rezk]]. It is reproduced as ([[Higher Topos Theory|Lurie HTT, theorem 6.1.6.8]]). In terms of [[homotopy type theory]] these object classifiers are \emph{[[types of types]]}. See there for more details and see at \emph{[[relation between category theory and type theory]]}. \begin{remark} \label{ReflectonOnCharacterizationByObjectClassifier}\hypertarget{ReflectonOnCharacterizationByObjectClassifier}{} An [[object classifier]] is a (small) \emph{self-reflection} of the $(\infty, 1)$-topos inside itself ([[type of types]], internal [[universe]]). It possesses an [[category object in an (infinity,1)-category|internal (∞,1)-topos ]] structure. See also ([[Science of Logic\#WesenAlsReflexionInIhmSelbst|WdL, book 2, section 1]]). \end{remark} \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} Let $\mathcal{C}$ be a [[(∞,1)-category]], and let $S$ be a class of [[1-morphisms]] of $\mathcal{C}$ which is stable under [[(∞,1)-pullback]]. Then an \textbf{$S$-classifier} is a [[terminal object in an (∞,1)-category|terminal object]] in the sub-category of arrows $\mathcal{C}^{\Delta^1}$ of $S$ whose morphisms are [[(∞,1)-pullback]] squares in $\mathcal{C}$. Explicitly, an $S$-classifier consists of \begin{itemize}% \item a morphism $\widehat {S Type} \longrightarrow S Type$ in $S$ \item such that for each $X \stackrel{p}{\to} B$ in $S$, there exists an essentially unique [[(∞,1)-pullback]] square of the form \begin{displaymath} \itexarray{ X &\longrightarrow& \widehat {S Type} \\ \downarrow^{\mathrlap{p}} && \downarrow \\ B &\stackrel{'X'}{\longrightarrow}& S Type } \,. \end{displaymath} in $\mathcal{C}$ \end{itemize} Here $'X'$ may be called the \emph{name}, or the \emph{[[classifying morphism]]}, or the \emph{[[modulating morphism]]} or the \emph{internal reflection} of $X$ over $B$, For example, \begin{itemize}% \item When $S$ is the class of \textbf{all monomorphisms} in $C$, an $S$-classifier is called a \textbf{subobject classifier}. For instance, every topos has a subobject classifier. \item When $S$ is the class of \textbf{all morphisms} in $C$, an $S$-classifier is called an \textbf{object classifier}. However, due to size issues, interesting categories tend not to have such objects, which is one reason to be interested in the next example: \item When $S$ is the class of \textbf{all relatively $\kappa$-compact morphisms} (for some regular cardinal $\kappa$--see below for the definition), an $S$-classifier is called a \textbf{$\kappa$-compact-object classifier}. \end{itemize} \textbf{Note on terminology:} In all cases, the ``things'' classified by an ``(adjectives) object classifier'' are \emph{arrows} -- this is no different from the most famous case of \emph{[[subobject classifiers]]}, which classify \emph{monos}. For each object $X$, a \emph{subobject classifier} classifies the \emph{subobjects of $X$}. For each object $X$, an \emph{object classifier} classifies the \emph{objects over $X$}. So with that $\kappa$ fixed, we may write \begin{displaymath} \itexarray{ \widehat Type \\ \downarrow \\ Type } \end{displaymath} for such a ``universal bundle of $\kappa$-small objects''. Intuitively this is easy to describe: a point in $Type$ corresponds to a $\kappa$-small object, hence is the ``name'' $'X'$ or ``code for'' a $\kappa$-small object, and the [[fiber]] in $\widehat Type$ over that point is the very object $X$ itself. If one gives the projection of the universal object bundle $\widehat Type \to Type$ a name, such as $El$, and writes $El^{-1}(-)$ for its preimages then $X \simeq El^{-1}('X')$. This is, with the ${(-)}^{-1}$-suppressed, the notation used at \emph{\href{type+of+types#TarskiStyle}{Type universes a la Tarski}}. \hypertarget{details}{}\subsection*{{Details}}\label{details} \hypertarget{DetailsSubObjClassf}{}\subsubsection*{{Subobject classifier}}\label{DetailsSubObjClassf} \begin{defn} \label{}\hypertarget{}{} Let $C$ be an [[(∞,1)-category]] and $S \in C_1$ a class of [[morphisms]] that is stable under [[(∞,1)-pullback]] in $C$. Let $Cod_C$ be the [[codomain fibration]] of $X$, i.e. the [[(∞,1)-category of (∞,1)-functors]] \begin{displaymath} Cod_C := Func(\Delta[1], C) \end{displaymath} equipped with the [[Cartesian fibration]] $Cod_C \to C$ induced from the endpoint inclusion $\Delta[0] \to \Delta[1]$. Write \begin{itemize}% \item $Cod_C^S$ for the full [[sub-(∞,1)-category]] of $Cod_C$ on the object in $S$; \item $Cod_C^{(S)}$ the non-full subcategory whose objects are the elements of $S$, and whose morphisms are squares that are pullback diagrams. \end{itemize} Then evaluation at $\Delta[0] \to \Delta[1]$ yields \begin{itemize}% \item a [[Cartesian fibration]] $Cod_C^S \to C$; \item a [[right fibration]] $Cod_C^{(S)} \to C$. \end{itemize} We say a morphism $f :x \to y$ in $C$ \emph{classifies} $S$ -- or simply that $y$ classifies $S$ -- if it is the [[terminal object]] in $Cod_C^{(S)}$. \end{defn} This is [[Higher Topos Theory|HTT, notation 6.1.3.4]] and [[Higher Topos Theory|HTT, def. 6.1.6.1 ]]. \begin{defn} \label{}\hypertarget{}{} A \textbf{subobject classifier} for $C$ is an object that classifies the class $S$ of [[monomorphism in an (∞,1)-category|monomorphisms]]/[[(-1)-truncated]] morphisms in $C$. \end{defn} This is ([[Higher Topos Theory|HTT, def. 6.1.6.1 ]]). \begin{example} \label{}\hypertarget{}{} The $(\infty,1)$-category [[∞Grpd]] has a a subobject classifier: the [[0-groupoid]]/[[set]] $\{\emptyset,*\}$ with two elements (the two [[(-1)-truncated]] $\infty$-groupoids). \end{example} \begin{prop} \label{}\hypertarget{}{} Every [[(∞,1)-topos]] has a [[subobject classifier]]. \end{prop} This appears as ([[Higher Topos Theory|HTT, prop. 6.1.6.3]]) and the remark below that. \hypertarget{DetailsObjClassf}{}\subsubsection*{{Object classifier}}\label{DetailsObjClassf} \textbf{Remark/Warning.} The point of having [[subobjects]] and hence [[monomorphisms]] classified by an object in an ordinary [[topos]] may be thought of as being solely due to the fact that in a 1-[[topos]], any object necessarily classifies a \emph{[[poset]]} i.e. a [[(0,1)-category]] of morphisms, and the point of subobjects/monomorphisms of a given object is that they do not have [[automorphisms]]. In an $(\infty,1)$-topos we thus expect an object that classifies \emph{all} morphisms, in that the assignment \begin{displaymath} c \mapsto Core(C_{/c}) \end{displaymath} of an object $c\in C$ to the [[core]] of its [[over quasi-category|over (∞,1)-category]] yields a [[(∞,1)-functor]] $C^{op} \to \infty Grpd$ that is [[representable functor|representable]]. Indeed, this is \emph{essentially} the case -- up to size issues, that the following definitions take care of. \begin{defn} \label{RelativelyKappaCompact}\hypertarget{RelativelyKappaCompact}{} For $\kappa$ some [[cardinal]], say a morphism $f : x \to y$ in $C$ is \textbf{[[relatively k-compact morphism in an (infinity,1)-category|relatively k-compact]]} if for all [[(∞,1)-pullbacks]] along $h : y' \to y$ to $\kappa$-[[compact object in an (∞,1)-category|compact object]]s, $y'$, the pulled back object $h^* x'$ is itself a $\kappa$-compact object. \end{defn} \begin{theorem} \label{}\hypertarget{}{} A [[presentable (∞,1)-category]] $C$ is an [[(∞,1)-topos]] precisely if \begin{enumerate}% \item it has [[universal colimits]]; \item for sufficiently large regular [[cardinal]]s $\kappa$, $C$ has a classifying object for relatively $\kappa$-compact morphisms. \end{enumerate} \end{theorem} This is due to [[Charles Rezk]]. The statement appears as [[Higher Topos Theory|HTT, theorem 6.1.6.8]]. The proof essentially consists of showing that by the [[adjoint functor theorem]], the existence of object classifiers is equivalent to [[continuous functor|continuity]] of the [[core]] [[self-indexing]] $C^{op} \to \infty Gpd$ defined by $x\mapsto Core(C/x)$. In the presence of universal colimits, this latter condition is equivalent to all colimits being [[van Kampen colimits]], which in turn yields the connection to the Giraud-type exactness properties. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{ObjectClassifierInInfinityGroupoid}{}\subsubsection*{{Object classifier in $\infty Grpd$}}\label{ObjectClassifierInInfinityGroupoid} We discuss that the $\kappa$-small object classifier in the $(\infty,1)$-topos [[∞Grpd]] of [[∞-groupoids]] is itself the [[core]] of the [[(∞,1)-category]] $\infty Grpd_\kappa$ of $\kappa$-small $\infty$-groupoids. Observing that the connected components of this are the [[delooping]] $B Aut(F)$ of the [[automorphism ∞-group]] of a given [[homotopy type]] $[F]$, and using that [[∞Grpd]] is [[presentable (∞,1)-category|presented]] by [[Top]] $\simeq$ [[sSet]] (see also at \emph{[[homotopy hypothesis]]}) this recovers classical theorems about the classification of [[fibrations]] in simplicial sets/topological spaces by a [[universal Kan fibration]], as listed in the \href{http://ncatlab.org/nlab/show/associated+infinity-bundle#References}{References} at \emph{[[associated ∞-bundle]]}. \begin{prop} \label{}\hypertarget{}{} The $\kappa$-compact object classifier in [[∞Grpd]] is \begin{displaymath} Type_\kappa := Core(\infty Grpd_\kappa) \,, \end{displaymath} the [[core]] of the [[full sub-(∞,1)-category]] of [[∞Grpd]] on the $\kappa$-[[small ∞-groupoids]]. The corresponding [[universal bundle]] is presented by the map of [[simplicial sets]] \begin{displaymath} \widehat Type_\kappa \to Type_\kappa \end{displaymath} which is the [[pullback]] of simplicial sets \begin{displaymath} \itexarray{ \widehat Type_\kappa &\to& Z_{\infty Grpd} \\ \downarrow && \downarrow \\ Type_\kappa &\to& \infty Grpd } \end{displaymath} of the [[universal right fibration]] along the defining inclusion of (the [[Kan complex]] presenting) $Type_\kappa$. \end{prop} \begin{lemma} \label{RelativelyCompactInInfinityGroupods}\hypertarget{RelativelyCompactInInfinityGroupods}{} In [[∞Grpd]] the relatively $\kappa$-compact morphisms, $X \to Y$, def. \ref{RelativelyKappaCompact}, are precisely those all whose [[homotopy fibers]] \begin{displaymath} X_{y} := X \times_{Y} \{y\} \end{displaymath} over all [[objects]] $y \in Y$ are $\kappa$-[[small infinity-groupoids]]. \end{lemma} \begin{proof} We may write $Y$ as an [[(∞,1)-colimit]] over itself (see there) \begin{displaymath} Y \simeq {\lim_{\to}}_{y \in Y} \{y\} \end{displaymath} and then use the fact that [[∞Grpd]] -- being an [[(∞,1)-topos]] -- has [[universal colimits]], to obtain the [[(∞,1)-pullback]] diagram \begin{displaymath} \itexarray{ {\lim_{\to}}_{y \in Y} X_y &\stackrel{\simeq}{\to} & X \\ \downarrow && \downarrow \\ {\lim_{\to}}_{y \in Y} \{y\} &\stackrel{\simeq}{\to}& Y } \end{displaymath} exhibiting $X$ as an $(\infty,1)$-colimit of $\kappa$-small objects over $Y$. By stability of $\kappa$-compact objects under $\kappa$-small colimits (see \href{http://ncatlab.org/nlab/show/compact+object+in+an+%28infinity%2C1%29-category#StabilityUnderColimits}{here}) it follows that $X$ is $\kappa$-compact if $Y$ is. \end{proof} \begin{proof} Since [[right fibrations]] are stable under pullback (see \href{http://ncatlab.org/nlab/show/right%2Fleft+Kan+fibration#PreservationByPullback}{here}), this is still a right fibration. Since, up to equivalence, every morphism into a [[Kan complex]] is a right fibration (see \href{http://ncatlab.org/nlab/show/right%2Fleft+Kan+fibration#OverKanComplex}{here}), and since every morphism out of a Kan complex into $\infty Grpd_\kappa$ factors through the core $Type_\kappa$ it follows that $Type_\kappa$ classifies all morphisms $X \to Y$ in [[∞Grpd]] whose [[homotopy fibers]] \begin{displaymath} X_y \simeq X \times_Y \{y\} \end{displaymath} are $\kappa$-[[compact object in an (∞,1)-category|compact]]. The claim then follows with lemma \ref{RelativelyCompactInInfinityGroupods}. \end{proof} \hypertarget{object_classifier_in_presheaf_toposes}{}\subsubsection*{{Object classifier in presheaf $(\infty,1)$-toposes}}\label{object_classifier_in_presheaf_toposes} Let $C$ be an [[(∞,1)-category]] and $\mathbf{H} = PSh_{\infty}(C)$ the [[(∞,1)-category of (∞,1)-presheaves]] over $C$. By the [[(∞,1)-Yoneda lemma]], the $\kappa$-compact object classifier here should be the presheaf which assigns to $U \in C$ the $\infty$-groupoid of relatively $\kappa$-compact morphisms $X \to U$ in $PSh_\infty(C)$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[type of propositions]], [[subobject classifier]], [[partial map classifier]] \item [[type of types]], [[univalence]] \item [[classifying morphism]] \item [[Awodey's conjecture]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Jacob Lurie]], section 6.1.6 of \emph{[[Higher Topos Theory]]} \end{itemize} [[!redirects object classifier]] [[!redirects object classifiers]] [[!redirects (sub)object classifier in an (∞,1)-topos]] [[!redirects (sub)object classifiers in an (∞,1)-topos]] [[!redirects (sub)object classifier in an (infinity,1)-topos]] [[!redirects (sub)object classifiers in an (infinity,1)-topos]] [[!redirects object classifier in an (∞,1)-topos]] [[!redirects object classifiers in an (∞,1)-topos]] [[!redirects object classifier in an (infinity,1)-topos]] [[!redirects object classifiers in an (infinity,1)-topos]] [[!redirects (sub)object classifier in an (∞,1)-category]] [[!redirects (sub)object classifiers in an (∞,1)-category]] [[!redirects (sub)object classifier in an (infinity,1)-category]] [[!redirects (sub)object classifiers in an (infinity,1)-category]] [[!redirects object classifier in an (∞,1)-category]] [[!redirects object classifiers in an (∞,1)-category]] [[!redirects object classifier in an (infinity,1)-category]] [[!redirects object classifiers in an (infinity,1)-category]] \end{document}